
Ergodic Theory of Interval Exchange
Transformations

Joint with Jon Chaika

October 29, 2017

Joint with Jon Chaika Ergodic Theory of Interval Exchange Transformations



An interval exchange transformation on d intervals is a bijection
T : [0, 1)→ [0, 1) given by cutting up [0, 1) into d subintervals and
then rearranging the intervals by a translation on each interval.

Historically IET arose in the study of billiard flows in polygons with
angles rational multiple of π. and more generally translation
surfaces.

Figure: Interval Exchange
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Vary θ you get 1- parameter family of IET.

The endpoints of intervals are discontinuities of T .

The classical example is when d = 2 and we have a number
0 < λ < 1. The map is

T (x) = x + λ (mod1)

so T [0, 1− λ) = [λ, 1) and T [1− λ, 1) = [0, λ).

Identify [0, 1) with unit circle via x → e2πix . Then T is rotation of
circle by angle 2πλ.
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In the classical case of a torus the first return is IET with d = 2.
Kroneker-Weyl Theorem says that

If λ = p
q then for every point x , the orbit is periodic;

T (q)(x) = x .

if λ irrational then every orbit T (n)(x) is dense (minimality)
and equidistributed on [0, 1)

lim
N→∞

1

N

N−1∑
j=0

f (T (j)(x)) =

∫ 1

0
f (t)dt

for every x and f continuous.

This says all orbits behave the same way
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This last notion is called unique ergodicity

Ergodicity says that orbit of generic point satisfies this equation.

For example: geodesic flow on closed surface constant negative
curvature is ergodic. There are equidistributed orbits, closed orbits,
and lots of different behavior.

The flow is not uniquely ergodic

Unique ergodicity is equivalent to T having a unique invariant
probability measure.

In case of IET the measure is Lebesgue. .
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Question: Does minimality imply unique ergodicity?

Answer: No
In the context of IET and billiards first counterexample due to
Veech (1970)

Figure: Slit torus

For some lengths of side E and directions θ of the flow, the flow in
direction θ is minimal and not uniquely ergodic.
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Construction of IET that are not uniquely ergodic I will describe
today essentially originates from Keane(1973)

Other examples were constructed by Satayev (1973)

More recently, examples are constructed using topological
methods, limits of simple closed curves and Thurston’s sphere of
projective measured foliations. (Gabai, Leininger,Modami,
Lenzhen, Rafi, Brock).
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HOW COMMON ARE NON UNIQUELY ERGODIC IET?

Fix an irreducible permutation π on d letters. The set of IET with
permutation π is parametrized by the standard simplex

∆d = {~λ :
d∑

i=1

λi = 1}.

.

If the orbit of a point of discontinuity does not hit another
discontinuity then, every orbit is dense.(minimality)

This holds except only on a set of positive codimension so we
ignore the set of IET which are not minimal.

Keane conjectured that in ∆d the set of IET that are minimal but
not uniquely ergodic should have 0 Lebesgue measure. This was
proved by myself and independently, Veech (1982).
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Fix a rational billiard table or more generally a translation surface.
S.Kerckhoff, M, J. Smillie (1986) showed that the set of directions
θ ∈ [0, 2π) such that the billiard flow in direction θ (or
corresponding IET) is not uniquely ergodic has Lebesgue measure
0.

For some billiard tables (translation surfaces) if a direction is
minimal it must be uniquely ergodic. Examples are lattice
translation surfaces.

Example of lattice surface are billiards in regular n-gon

(Veech 1990) For a lattice surface; for any direction θ, the flow in
direction θ is either completely periodic or minimal and uniquely
ergodic.
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HAUSDORFF DIMENSION

Here again we are working with the d − 1 dimensional simplex ∆d

which parametrizes all IET with d intervals. Denote NUE as non
uniquely ergodic IET.

Smillie and M(1991) showed that if d ≥ 4 then for each π there is
a constant 0 < δ < 1 such that HDim(NUE ) = d − 1− δ.

Question: What is value of δ?

Theorem

(joint with Jon Chaika)
Suppose d ≥ 4. Let π be a permutation in the Rauzy class of the
symmetric permutation (d , d − 1, . . . , 1). Then
HDim(NUE ) = d − 1− 1

2 .

For d = 4 proved previously by Athreya-Chaika. (There is only one
Rauzy class )
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I want to focus on LOWER bound that the Hausdorff dimension is
at least d − 1− 1

2 . This means constructing large sets of non
uniquely ergodic IET. The method we used is called Rauzy
induction. (Upper bound proved previously myself using
Teichmüller dynamics)

Rauzy induction R is map from ∆d with a permutation to ∆d

with a possibly different permutation. It is a renormalization
procedure which when iterated tells you about the dynamics of the
given IET. (It is a different iteration than iterating T by forming
T (n)). Rauzy induction is one of the standard tools in the subject
of IET, Teichmüller dynamics.
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Figure: Rauzy induction
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The permutations are in same Rauzy class

In case d = 2 where only two intervals I1 and I2 compete, the
number of times one interval say I1 beats I2 in a row is determined
by continued fraction expansion of λ.

Repeating Rauzy induction puts more and more restrictions on IET.

Figure: Illustration of Iterated Rauzy Induction
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It is a standard fact that an IET is uniquely ergodic iff the nested
sequence of simplices it determines converges down just to that
point (and not a positive dimension simplex).

GOAL: To prove our theorem: make choices of winners and losers
in Rauzy induction to build lots of sequences of nested simplices
whose infinite intersections are larger than a point. By lots I mean
so we get big Hausdorff dimension.

Associated to R is a d × d elementary (projective) matrix

A : ∆d → ∆d .

It has 1 on diagonal. In first case (λm < λj) it has 1 in [m, j ] place
and 0 elsewhere.

In second case it has 1 in [j ,m] place
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We can repeat Rauzy induction with new IET T ′ and get 2 new
possible matrices depending on who wins. After doing Rauzy
induction n times we get matrices A1, . . . ,An, a new IET Rn(T ),
new lengths ~λn,

We take product of matrices

Mn = A1A2 · · ·An : ∆d → ∆d .

We think of Mn two ways. On one hand it relates lengths of
Rn(T ) to original T by

~λ = Mn
~λn
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The second way is that the j th column of Mn records the number
of visits of j th interval of Rn(T ) to the intervals of T .

In going from Mn−1 to Mn by multiplying on right by An, say with
Im beating Ij we add mth column of Mn−1 to j th column of Mn−1
to get Mn.

As we have said Mn∆d ⊂ ∆d is a decreasing sequence of simplices
and T is uniquely ergodic iff ∩∞n=1Mn∆ is a single point

We can see that by saying that if it converges to a point then the
columns are projectively almost the same. Since they are given by
visitations, this says all points visit the original intervals with the
same distribution .
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This gives (another) proof of Weyl Theorem holds (d = 2). There
are only 2 columns. One column is added to the other a number of
times and then the second is added to the first.

An essentially trivial fact: you have vectors v1, v2 in Rd and
|v1| ≥ |v2|. Then v1 and v1 + v2 are closer in angle than v1 and v2
by a definite factor. For d = 2 it happens infinitely often that a
large column is added to a smaller one. It follows that the
1-dimensional simplicies converge to a point.

If you want to build non uniquely ergodic IET for d ≥ 4 you want
at least one pair of columns to be projectively different as n→∞.
In our case the first d − 2 columns will converge projectively to one
single limit, (the angles between them goes to 0) but d − 1 and d
columns to a different limit.
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Here is a rough idea of how we do this. The major point is that at
any step you have a choice of which interval you want to win.

All columns are ultimately added to all others, but as stated in the
last slide we cannot add a column Ci ; i ≤ d − 2 to Cd−1 or Cd

column when the first d − 2 columns are larger than the last two
and vice versa.
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We will repeat infinitely often the following steps

1 The first d − 2 columns start much smaller than the last two.
We act as if we have IET on d − 2 intervals and do any Rauzy
induction we please on these d − 2 intervals, except that we
beat the last two intervals when in conflict. This we call
freedom.

2 At a moment in this process we need the first d − 2 columns
to start to become large compared to the last two columns.
Then for a period of Rauzy induction they are only added to
each other which means they never even compete with the
last two intervals. This is called restriction. At end of this
sequence of restriction, the first d − 2 columns are now much
bigger than the last two
Morally we have a genus g − 1 surface glued to a torus and
they barely interact.

3 We repeat the previous two steps starting now with the last
two columns being much smaller.
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Restriction drastically cuts the measure of the collection of IET we
build (as it must since at end we have measure 0).
The way our permutations work during restriction is that the first
interval I1 always loses so it cuts down measure, but we have
enough control to give Hausdorff dimension.

Where does 1/2 in Theorem come from in our case?

Somewhat analogous statement. The set of reals in their
continued fraction expansion x = [a0, a1 . . .] that satisfy an →∞
has dimension 1/2
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Here is a snapshot of one thing we prove. We cut ∆d into a fixed
family of parallel planes P and along a subsequence of steps k of
Rauzy induction, intersect all our subsimplicies with planes P to
give exponentially (in k) many disjoint polygons ∆j

k ⊂ P each with
diameter rk such that

For most planes P the number nk of polygons ∆j
k satisfies for

all ε > 0

lim
k→∞

nk r
3/2−ε
k =∞.

If . . .∆j
k+2 ⊂ ∆j

k+1 ⊂ ∆j
k . . . ⊂ ∆j

1 is a nested sequence of

polygons then ∩∞k=1∆j
k ∩ P ⊂ NUE
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With some other things one needs to prove such as estimates on
distance between disjoint polygons, estimates on how rk decays in
k , then one can put a Borel measure µ on a positive measure set
of planes P such that

µ(P ∩ NUE ) > 0

µ(B(x , r)) < r3/2.

Use Frostman’s Lemma to say

HDim(P ∩ NUE ) ≥ 3/2 = 2− 1/2

for a positive measure set of planes. One promotes this to the
whole simplex. That is where loss of 1/2 comes from.
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THANK YOU

HAPPY BIRTHDAY BENSON!
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