

Twisted rabbits and Hubbard trees Becca Winarski University of Wisconsin-Milwaukee

joint with Jim Belk, Justin Lanier and Dan Margalit

$$p(z) = z^2 + c$$

$$p(z) = z^2 + c$$

$$p(z) = z^2 + c$$

$$p(z) = z^2 + c$$

3 values of c p_R, p_C, p_A

Julia sets

 $T_d \circ p_R$

Twisted rabbit problem:

 $f \in \operatorname{Mod}(\mathbb{C}, P)$ what is $f \circ p_R$?

1. Topological description of p_R

1. Topological description of $p_R \longrightarrow$ branched covers

- 1. Topological description of $p_R \longrightarrow$ branched covers
- 2. Distinguish p_R, p_C, p_A

- 1. Topological description of $p_R \longrightarrow$ branched covers
- 2. Distinguish p_R, p_C, p_A ———— Hubbard trees

- 1. Topological description of $p_R \longrightarrow$ branched covers
- 2. Distinguish p_R, p_C, p_A ———— Hubbard trees
- 3. Given f, what is $f \circ p_R$?

- 1. Topological description of $p_R \longrightarrow$ branched covers
- 2. Distinguish p_R, p_C, p_A ———— Hubbard trees
- 3. Given f, what is $f \circ p_R$?
 - following Bartholdi—Nekyrashevych

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

Hubbard trees as an invariant

 T_A is combinatorially different from T_R and T_C

Hubbard trees as an invariant

 T_A is combinatorially different from T_R and T_C

AND: 1

- p_R rotates the edges of T_R clockwise
- p_C^{-1} rotates the edges of T_C counterclockwise

Hubbard trees as an invariant

 T_A is combinatorially different from T_R and T_C

AND:

- p_R rotates the edges of T_R clockwise
- p_C^{-1} rotates the edges of T_C counterclockwise

Proposition (Belk, Lanier, Margalit, W)

The Hubbard tree and its direction of rotation under p^{-1} distinguish p_R, p_C, p_A .

The general conjectures

Conjecture 1: Given a polynomial p and a tree T, $\{p^{-n}(T)\}$ will converge to the Hubbard tree for p.

The general conjectures

Conjecture 1: Given a polynomial p and a tree T, $\{p^{-n}(T)\}$ will converge to the Hubbard tree for p.

Conjecture 2: Given polynomials p_1, p_2 , the Hubbard trees and direction of rotation under p_1^{-1}, p_2^{-1} are different.

Homological eigenvalues of pseudo Anosov mapping classes

Asaf Hadari

University of Hawaii at Manoa

October 16, 2017

Homological representations

• Let Σ be a hyperbolic orientable surface of finite type and let $\mathsf{Mod}(\Sigma)$ be its mapping class group.

Homological representations

- Let Σ be a hyperbolic orientable surface of finite type and let Mod(Σ) be its mapping class group.
- Suppose Σ has at least one puncture, or marked point. Given a finite cover $\pi:\widetilde{\Sigma}\to\Sigma$, a finite index subgroup $\Gamma<\mathsf{Mod}(\Sigma)$ lifts to $\mathsf{Mod}(\widetilde{\Sigma})$. The action of Γ on $H_1(\widetilde{\Sigma},\mathbb{Z})$ is called the homological representation corresponding to π . Denote this representation ρ_π .

Homological representations

- Let Σ be a hyperbolic orientable surface of finite type and let $\mathsf{Mod}(\Sigma)$ be its mapping class group.
- Suppose Σ has at least one puncture, or marked point. Given a finite cover $\pi:\widetilde{\Sigma}\to\Sigma$, a finite index subgroup $\Gamma<\mathsf{Mod}(\Sigma)$ lifts to $\mathsf{Mod}(\widetilde{\Sigma})$. The action of Γ on $H_1(\widetilde{\Sigma},\mathbb{Z})$ is called the homological representation corresponding to π . Denote this representation ρ_π .
- Question: How much information about $Mod(\Sigma)$ can be recovered from its homological representations?

Given a non-identity element $f \in \operatorname{Mod}(\Sigma)$, it is easy to show that there is a cover π to which f lifts such that $\rho_{\pi}(f) \neq Id$. Suppose f is a pseudo Anosov mapping class. Can we recover more information about f?

Given a non-identity element $f \in \operatorname{Mod}(\Sigma)$, it is easy to show that there is a cover π to which f lifts such that $\rho_{\pi}(f) \neq Id$. Suppose f is a pseudo Anosov mapping class. Can we recover more information about f?

• Let $\sigma_{\pi}(f)$ be the spectral radius of the operator $\rho_{\pi}(f)$. If f has orientable stable and unstable foliations then $\sigma_{\pi}(f)$ is $\lambda(f)$, the dilatation of f. It is simple to show that $\sigma_{\pi}(f) < \lambda(f)$.

Given a non-identity element $f \in \operatorname{Mod}(\Sigma)$, it is easy to show that there is a cover π to which f lifts such that $\rho_{\pi}(f) \neq Id$. Suppose f is a pseudo Anosov mapping class. Can we recover more information about f?

- Let $\sigma_{\pi}(f)$ be the spectral radius of the operator $\rho_{\pi}(f)$. If f has orientable stable and unstable foliations then $\sigma_{\pi}(f)$ is $\lambda(f)$, the dilatation of f. It is simple to show that $\sigma_{\pi}(f) \leq \lambda(f)$.
- McMullen proved that $\sup_{\pi} \sigma_{\pi}(f)$ can be smaller than $\lambda(f)$.

Given a non-identity element $f \in \operatorname{Mod}(\Sigma)$, it is easy to show that there is a cover π to which f lifts such that $\rho_{\pi}(f) \neq Id$. Suppose f is a pseudo Anosov mapping class. Can we recover more information about f?

- Let $\sigma_{\pi}(f)$ be the spectral radius of the operator $\rho_{\pi}(f)$. If f has orientable stable and unstable foliations then $\sigma_{\pi}(f)$ is $\lambda(f)$, the dilatation of f. It is simple to show that $\sigma_{\pi}(f) \leq \lambda(f)$.
- McMullen proved that $\sup_{\pi} \sigma_{\pi}(f)$ can be smaller than $\lambda(f)$.
- Conjecture (McMullen): For f pseudo-Anosov $\sup_{\pi} \sigma_{\pi}(f) > 1$.

Recently, I proved the following result which provided evidence for the McMullen conjecture.

Recently, I proved the following result which provided evidence for the McMullen conjecture.

Theorem

Let Σ be a surface with free non-abelian fundamental group. Let $f \in \mathsf{Mod}(\Sigma)$ be an infinite order mapping class. Then there exists a cover π such that $\rho_{\pi}(f)$ has infinite order.

Recently, I proved the following result which provided evidence for the McMullen conjecture.

Theorem

Let Σ be a surface with free non-abelian fundamental group. Let $f \in \mathsf{Mod}(\Sigma)$ be an infinite order mapping class. Then there exists a cover π such that $\rho_{\pi}(f)$ has infinite order.

Building on this proof, I've proved the following.

Recently, I proved the following result which provided evidence for the McMullen conjecture.

Theorem

Let Σ be a surface with free non-abelian fundamental group. Let $f \in \mathsf{Mod}(\Sigma)$ be an infinite order mapping class. Then there exists a cover π such that $\rho_{\pi}(f)$ has infinite order.

Building on this proof, I've proved the following.

Theorem

Let Σ be a surface with free non-abelian fundamental group. Let $f \in \mathsf{Mod}(\Sigma)$ be a pseudo Anosov mapping class. Then there exists a finite cover π such that $\sigma_{\pi}(f) > 1$.

Some features of the proof

• The cover π can be taken to be characteristic, and the deck group can be taken to be solvable.

Some features of the proof

- The cover π can be taken to be characteristic, and the deck group can be taken to be solvable.
- The proof can be made to be constructive.

Some features of the proof

- The cover π can be taken to be characteristic, and the deck group can be taken to be solvable.
- The proof can be made to be constructive.
- The proof also works if we replace $Mod(\Sigma)$ with $Aut(F_n)$, and f with a fully irreducible element of $Aut(F_n)$.

Mapping class groups and monodromy of families of plane curves

Nick Salter Harvard University October 30, 2017

Object of study:

Object of study: Smooth projective complex

plane curves of degree d

Object of study:

Smooth projective complex plane curves of degree d

E.g.
$$\{[X:Y:Z] \in \mathbb{C}P^2 \mid X^d + Y^d + Z^d = 0\}$$

Object of study: Smooth projective complex

plane curves of degree d

E.g.
$$\{[X:Y:Z] \in \mathbb{C}P^2 \mid X^d + Y^d + Z^d = 0\}$$

Universal curve: Surface bundle $\mathfrak{X}_d \to \mathcal{P}_d$

Object of study: Smooth projective complex

plane curves of degree d

E.g.
$$\{[X:Y:Z] \in \mathbb{C}P^2 \mid X^d + Y^d + Z^d = 0\}$$

Universal curve: Surface bundle $\mathfrak{X}_d \to \mathcal{P}_d$

Monodromy: Homomorphism $\rho_d: \pi_1(\mathcal{P}_d) \to \operatorname{Mod}(\Sigma_g)$

Object of study: Smooth projective complex

plane curves of degree d

E.g.
$$\{[X:Y:Z] \in \mathbb{C}P^2 \mid X^d + Y^d + Z^d = 0\}$$

Universal curve: Surface bundle $\mathfrak{X}_d \to \mathcal{P}_d$

Monodromy: Homomorphism $\rho_d: \pi_1(\mathcal{P}_d) \to \operatorname{Mod}(\Sigma_g)$

Basic question: What is $\Gamma_d := \operatorname{im}(\rho_d)$?

Beauville:

Beauville: Computation of "cohomological monodromy"

Beauville: Computation of "cohomological monodromy"

Key points:

Beauville: Computation of "cohomological monodromy"

Key points: Always finite-index in $Sp(2g, \mathbb{Z})$

Beauville: Computation of "cohomological monodromy"

Key points: Always finite-index in $Sp(2g, \mathbb{Z})$

For d even, surjective

Beauville: Computation of "cohomological monodromy"

Key points: Always finite-index in $Sp(2g, \mathbb{Z})$

For d even, surjective

For d odd, must preserve a spin structure

Beauville: Computation of "cohomological monodromy"

Key points: Always finite-index in $Sp(2g, \mathbb{Z})$

For d even, surjective

For d odd, must preserve a spin structure

Question: Are there "non-cohomological" obstructions?

Does $\Gamma_d = \operatorname{Mod}(\Sigma_g)$ for d even?

Some prior work

Some prior work

Folklore observation:

Folklore observation: There are "higher spin structures" preserved by Γ_d for any d

Folklore observation: There are "higher spin structures" preserved by Γ_d for any d

Define $\operatorname{Mod}(\Sigma_g)[\phi_d]$ as the stabilizer of ϕ_d (a higher spin structure)

Folklore observation: There are "higher spin structures" preserved by Γ_d for any d

Define $\operatorname{Mod}(\Sigma_g)[\phi_d]$ as the stabilizer of ϕ_d (a higher spin structure)

Theorem (S., '16):

Folklore observation: There are "higher spin structures" preserved by Γ_d for any d

Define $\operatorname{Mod}(\Sigma_g)[\phi_d]$ as the stabilizer of ϕ_d (a higher spin structure)

Theorem (S., '16): $\Gamma_5 = \operatorname{Mod}(\Sigma_6)[\phi_5]$

Folklore observation: There are "higher spin structures" preserved by Γ_d for any d

Define $\operatorname{Mod}(\Sigma_g)[\phi_d]$ as the stabilizer of ϕ_d (a higher spin structure)

Theorem (S., '16): $\Gamma_5 = \operatorname{Mod}(\Sigma_6)[\phi_5]$

Method: reduce to Johnson's work on Torelli group

Theorem (S., Tuesday):

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

 $\Gamma_d \leq \operatorname{Mod}(\Sigma_g)[\phi_d]$ finite index for all d odd

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

 $\Gamma_d \leq \operatorname{Mod}(\Sigma_g)[\phi_d]$ finite index for all d odd

Points of interest:

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

 $\Gamma_d \leq \operatorname{Mod}(\Sigma_g)[\phi_d]$ finite index for all d odd

Points of interest:

Determine generators for $\operatorname{Mod}(\Sigma_g)[\phi_d]$

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

 $\Gamma_d \leq \operatorname{Mod}(\Sigma_g)[\phi_d]$ finite index for all d odd

Points of interest:

Determine generators for $\operatorname{Mod}(\Sigma_g)[\phi_d]$

Tip of an iceberg: line bundles on toric varieties

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

 $\Gamma_d \leq \operatorname{Mod}(\Sigma_g)[\phi_d]$ finite index for all d odd

Points of interest:

Determine generators for $\operatorname{Mod}(\Sigma_g)[\phi_d]$

Tip of an iceberg: line bundles on toric varieties

(results also for curves in $\mathbb{C}P^1 \times \mathbb{C}P^1$, Hirzebruch surfaces, etc.)

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

 $\Gamma_d \leq \operatorname{Mod}(\Sigma_g)[\phi_d]$ finite index for all d odd

Points of interest:

Determine generators for $\operatorname{Mod}(\Sigma_g)[\phi_d]$

Tip of an iceberg: line bundles on toric varieties

(results also for curves in $\mathbb{C}P^1 \times \mathbb{C}P^1$, Hirzebruch surfaces, etc.)

Uses tropical geometry methods developed by Crétois-Lang

Theorem (S., Tuesday): $\Gamma_d = \operatorname{Mod}(\Sigma_g)[\phi_d]$ for all d even

 $\Gamma_d \leq \operatorname{Mod}(\Sigma_g)[\phi_d]$ finite index for all d odd

Points of interest:

Determine generators for $\operatorname{Mod}(\Sigma_g)[\phi_d]$

Tip of an iceberg: line bundles on toric varieties

(results also for curves in $\mathbb{C}P^1 \times \mathbb{C}P^1$, Hirzebruch surfaces, etc.)

Uses tropical geometry methods developed by Crétois-Lang

Answers a question of Donaldson from 2000

Semidualities from products of trees

Daniel Studenmund joint with Kevin Wortman

University of Notre Dame

No Boundaries, October 2017

Theorem (Borel-Serre)

Suppose G is a semisimple algebraic group defined over $\mathbb Q$ and $\Gamma \leq G$ an arithmetic subgroup. Then Γ is a $\mathbb Q$ -duality group: there is a number d such that for any $\mathbb Q\Gamma$ -module M there are isomorphisms

$$H^k(\Gamma, M) \cong H_{d-k}(\Gamma, D \otimes_{\mathbb{Q}} M),$$

where $D = H^d(\Gamma, \mathbb{Q}\Gamma)$.

Theorem (Borel-Serre)

Suppose G is a semisimple algebraic group defined over $\mathbb Q$ and $\Gamma \leq G$ an arithmetic subgroup. Then Γ is a $\mathbb Q$ -duality group: there is a number d such that for any $\mathbb Q\Gamma$ -module M there are isomorphisms

$$H^k(\Gamma, M) \cong H_{d-k}(\Gamma, D \otimes_{\mathbb{Q}} M),$$

where $D = H^d(\Gamma, \mathbb{Q}\Gamma)$.

If Γ is cocompact in $G(\mathbb{R})$, then $D = \mathbb{Q}$.

Theorem (Borel–Serre)

Suppose G is a semisimple algebraic group defined over $\mathbb Q$ and $\Gamma \leq G$ an arithmetic subgroup. Then Γ is a $\mathbb Q$ -duality group: there is a number d such that for any $\mathbb Q\Gamma$ -module M there are isomorphisms

$$H^k(\Gamma, M) \cong H_{d-k}(\Gamma, D \otimes_{\mathbb{Q}} M),$$

where $D = H^d(\Gamma, \mathbb{Q}\Gamma)$.

If Γ is cocompact in $G(\mathbb{R})$, then $D=\mathbb{Q}$.

If Γ not cocompact, then D is countably generated and $G(\mathbb{Q}) \curvearrowright D$.

Theorem (Borel–Serre)

Suppose G is a semisimple algebraic group defined over $\mathbb Q$ and $\Gamma \leq G$ an arithmetic subgroup. Then Γ is a $\mathbb Q$ -duality group: there is a number d such that for any $\mathbb Q\Gamma$ -module M there are isomorphisms

$$H^k(\Gamma, M) \cong H_{d-k}(\Gamma, D \otimes_{\mathbb{Q}} M),$$

where $D = H^d(\Gamma, \mathbb{Q}\Gamma)$.

If Γ is cocompact in $G(\mathbb{R})$, then $D = \mathbb{Q}$.

If Γ not cocompact, then D is countably generated and $G(\mathbb{Q}) \curvearrowright D$.

Example: If $\Gamma = \mathsf{SL}_2(\mathbb{Z})$ then d = 1 and $D = H^1(\Gamma, \mathbb{Q}\Gamma) \cong \bigoplus_{P^1(\mathbb{O})} \mathbb{Q}$

• $\Gamma = \mathsf{SL}_2(\mathbb{Z})$ acts on hyperbolic plane \mathbb{H}^2 :

https://golem.ph.utexas.edu/category/2008/02/modular_forms.html

• $\Gamma = \mathsf{SL}_2(\mathbb{Z})$ acts on hyperbolic plane \mathbb{H}^2 :

https://golem.ph.utexas.edu/category/2008/02/modular_forms.html

• Γ acts cocompactly on $\widehat{\mathbb{H}^2}=\mathbb{H}^2-igcup_{x\in P^1(\mathbb{Q})}B_x$, for horoballs B_x

• $\Gamma = \mathsf{SL}_2(\mathbb{Z})$ acts on hyperbolic plane \mathbb{H}^2 :

https://golem.ph.utexas.edu/category/2008/02/modular_forms.html

- Γ acts cocompactly on $\widehat{\mathbb{H}^2}=\mathbb{H}^2-igcup_{x\in P^1(\mathbb{Q})}B_x$, for horoballs B_x
- $H^1(\Gamma, \mathbb{Q}\Gamma) \cong H^1_c(\widehat{\mathbb{H}^2}) \cong H_0(\widehat{\mathbb{H}^2}, \partial \widehat{\mathbb{H}^2}) \cong \widetilde{H}_0(\partial \widehat{\mathbb{H}^2}) \cong \widetilde{H}_0(P^1(\mathbb{Q}))$

Fact: Γ is a \mathbb{Q} -duality group of dimension d iff

- $H^n(\Gamma, \mathbb{Q}\Gamma) = 0$ if $n \neq d$, and
- Γ is type FP over \mathbb{Q} .

Fact: Γ is a \mathbb{Q} -duality group of dimension d iff

- $H^n(\Gamma, \mathbb{Q}\Gamma) = 0$ if $n \neq d$, and
- Γ is type FP over \mathbb{Q} .

Definition: Γ is a \mathbb{Q} -semiduality group of dimension d if

- $H^n(\Gamma, \mathbb{Q}\Gamma) = 0$ if $n \neq d$,
- Γ is type FP_{d-1} over \mathbb{Q} , and
- $cd_{\mathbb{Q}}(\Gamma) = d$.

Fact: Γ is a \mathbb{Q} -duality group of dimension d iff

- $H^n(\Gamma, \mathbb{Q}\Gamma) = 0$ if $n \neq d$, and
- Γ is type FP over \mathbb{Q} .

Definition: Γ is a \mathbb{Q} -semiduality group of dimension d if

- $H^n(\Gamma, \mathbb{Q}\Gamma) = 0$ if $n \neq d$,
- Γ is type FP_{d-1} over \mathbb{Q} , and
- $cd_{\mathbb{Q}}(\Gamma) = d$.

Theorem: If Γ is a semiduality group then for any M there are maps

$$\phi: H_{d-k}(\Gamma, D \otimes_{\mathbb{Q}} M) \to H^k(\Gamma, M)$$

that are isomorphisms for sufficiently 'nice' M.

Conjecture: Suppose G is a simple algebraic group defined over a global function field K of characteristic p and Γ is an S-arithmetic subgroup. Then Γ is a \mathbb{Q} -semiduality group.

Conjecture: Suppose G is a simple algebraic group defined over a global function field K of characteristic p and Γ is an S-arithmetic subgroup. Then Γ is a \mathbb{Q} -semiduality group.

Theorem (S.-Wortman)

Conjecture holds if $G = SL_2$, in which case $SL_2(K) \curvearrowright H^d(\Gamma, \mathbb{Q}\Gamma)$.

Conjecture: Suppose G is a simple algebraic group defined over a global function field K of characteristic p and Γ is an S-arithmetic subgroup. Then Γ is a \mathbb{Q} -semiduality group.

Theorem (S.-Wortman)

Conjecture holds if $G = SL_2$, in which case $SL_2(K) \curvearrowright H^d(\Gamma, \mathbb{Q}\Gamma)$.

Example: $K = \mathbb{F}_2(t)$ and $\Gamma = SL_2(\mathbb{F}_2[t, t^{-1}])$

Compute $H^n(\Gamma, \mathbb{Q}\Gamma)$ for $\Gamma = \operatorname{SL}_2(\mathbb{F}_2[t, t^{-1}]) \curvearrowright T \times T$

Compute
$$H^n(\Gamma, \mathbb{Q}\Gamma)$$
 for $\Gamma = \mathsf{SL}_2(\mathbb{F}_2[t, t^{-1}]) \curvearrowright T \times T$

Horoball B =

Compute
$$H^n(\Gamma,\mathbb{Q}\Gamma)$$
 for $\Gamma=\mathsf{SL}_2(\mathbb{F}_2[t,t^{-1}])\curvearrowright T\times T$

Dualizing module satisfies:

$$0 \to H^2_c(T \times T) \to H^2(\Gamma, \mathbb{Q}\Gamma) \to \bigoplus_{x \in P^1(K)} \varprojlim^1 H^1_c(B_n) \to 0$$

Compute
$$H^n(\Gamma, \mathbb{Q}\Gamma)$$
 for $\Gamma = \mathsf{SL}_2(\mathbb{F}_2[t, t^{-1}]) \curvearrowright T \times T$

Dualizing module satisfies:

$$0 \to H^2_c(T \times T) \to H^2(\Gamma, \mathbb{Q}\Gamma) \to \bigoplus_{x \in P^1(K)} \varprojlim^1 H^1_c(B_n) \to 0$$

Thank you! Happy birthday, Benson!

Fast Nielsen-Thurston Classification

Balázs Strenner

Georgia Institute of Technology

joint with Dan Margalit and S. Öykü Yurttaş

No boundaries – Groups in algebra, geometry and topology University of Chicago October 28, 2017

Benson

The Nielsen-Thurston Classification

Mod(S)

The Nielsen-Thurston Classification Problem

Fix finite generating set for Mod(S).

Running time: function of |f|.

stretch factor foliations

Main Theorem

Theorem (Margalit-S-Yurttaş): There exists a quadratic-time algorithm for the Nielsen-Thurston Classification Problem.

Isometries of \mathbb{H}^2

elliptic (up to power)

hyperbolic

parabolic

The mapping class group

pseudo-Anosov

finite order

(up to power)

Reducible

Thurston, Mosher: Compute the piecewise linear map and find all the eigenvectors.

finite order (up to power)

pseudo-Anosov

Reducible

Thurston, Mosher: Compute the piecewise linear map and find all the eigenvectors.

Exponentially many pieces

finite order (up to power)

pseudo-Anosov

Reducible

Toby Hall (Dynn): First iterate, then compute eigenvectors.

Toby Hall (Dynn): First iterate, then compute eigenvectors.

Unknown rate of convergence
Unknown behavior in reducible case

Toby Hall (Dynn): First iterate, then compute eigenvectors.

Unknown rate of convergence
Unknown behavior in reducible case

Bell-Schleimer: convergence can be exponentially slow

Toby Hall (Dynn): First iterate, then compute eigenvectors.

Unknown rate of convergence
Unknown behavior in reducible case

Bell-Schleimer: convergence can be exponentially slow

Margalit-S-Yurttaş: O(1) iterations is enough.

O(1) iterations

Macaw (implementation)

- 1. Works for closed surfaces
- 2. Solves the word problem
- 3. Approximates stretch factors
- 4. Computes the order

Macaw (implementation)

- 1. Works for closed surfaces
- 2. Solves the word problem
- 3. Approximates stretch factors
- 4. Computes the order

Contributors are welcome!

Macaw (implementation)

- 1. Works for closed surfaces
- 2. Solves the word problem
- 3. Approximates stretch factors
- 4. Computes the order

Contributors are welcome!

Thank you!

Adding points to configurations

Lei Chen
University of Chicago

 $\operatorname{Conf}_{n+1}(M)$

 $\operatorname{Conf}_n(M)$

 $\operatorname{Conf}_n(M)$

$$\operatorname{Conf}_{n+1}(M)$$

 $\operatorname{Conf}_n(M)$

$$\operatorname{Conf}_4(S^2) \xrightarrow{Forget} \operatorname{Conf}_3(S^2)$$

$$\operatorname{Conf}_4(S^2) \xrightarrow{Forget} \operatorname{Conf}_3(S^2)$$

$$\operatorname{Conf}_4(S^2) \xrightarrow{Forget} \operatorname{Conf}_3(S^2)$$

Add far away

Add far away

Add far away

Add close by

Add far away

Add close by

Theorem (C-)

Theorem (C-) When does $Conf_{n+1}(M) \xrightarrow{forget} Conf_n(M)$?

Theorem (C-) When does $Conf_{n+1}(M) \xrightarrow{forget} Conf_n(M)$?

1)
$$n > 3, M = \mathbb{R}^2$$

1)
$$n > 3, M = \mathbb{R}^2$$

Only "Add far away" "Add close by"

Theorem (C-) When does $Conf_{n+1}(M) \xrightarrow{forget} Conf_n(M)$?

1)
$$n > 3, M = \mathbb{R}^2$$
2) $M = S^2$

Only "Add far away" "Add close by"

1)
$$n > 3, M = \mathbb{R}^2$$

2) $M = S^2$

No for n=2

Only "Add far away" "Add close by"

1)
$$n > 3, M = \mathbb{R}^2$$

2)
$$M = S^2$$

No for n=2

Only "Add far away" "Add close by"

Yes for n>2

1)
$$n > 3, M = \mathbb{R}^2$$

2) $M = S^2$

No for n=2

Only "Add far away" "Add close by"

Yes for n>2

For n>4, only "Add close by"

1)
$$n > 3, M = \mathbb{R}^2$$

2) $M = S^2$

No for n=2

Only "Add far away" "Add close by"

Yes for n>2

For n>4, only "Add close by"

3)
$$g > 1, M = S_g$$

Theorem (C-) When does $Conf_{n+1}(M) \xrightarrow{forget} Conf_n(M)$?

1)
$$n > 3, M = \mathbb{R}^2$$

2) $M = S^2$

No for n=2

3)
$$g > 1, M = S_g$$

No for n>1

Only "Add far away" "Add close by"

Yes for n>2

For n>4, only "Add close by"

Theorem (C-) When does $Conf_{n+1}(M) \xrightarrow{forget} Conf_n(M)$?

1)
$$n > 3, M = \mathbb{R}^2$$

2) $M = S^2$

No for n=2

3) $g > 1, M = S_q$

No for n>1

Only "Add far away" "Add close by"

Yes for n>2

For n>4, only "Add close by"

Yes for n=1

Methods used

Methods used

Thurston's normal form

Thurston, Birman-Lubotzky-McCarthy, Ivanov and others

Methods used

Thurston's normal form

Thurston, Birman-Lubotzky-McCarthy, Ivanov and others

Obstructions in H*(Conf_n(M);**Q**)

Do we have other examples like these? Exotic sections?

Reference:

Pre-print: Section problems for configuration spaces of surfaces

https://arxiv.org/abs/1708.07921

Thanks!!

Mapping class groups: Bigger. Better? Commensurably rigid!

Spencer Dowdall

(with Juliette Bavard & Kasra Rafi)

Vanderbilt University
math.vanderbilt.edu/dowdalsd/

No boundaries conference October 28, 2017

Mapping class groups

S – oriented surface without boundary

$$\operatorname{Mod}(S) = \operatorname{Homeo}(S)/\mathsf{isotopy}$$

Mapping class groups

S – oriented surface without boundary

$$Mod(S) = Homeo(S)/isotopy$$

Mapping class groups

S – oriented surface without boundary

$$Mod(S) = Homeo(S)/isotopy$$

 $\textbf{Big mapping class groups:} \ \operatorname{Mod}(\mathsf{infinite}\text{-type surface})$

Big mapping class groups: Mod(infinite-type surface)

Big mapping class groups: Mod(infinite-type surface)

Big mapping class groups: Mod(infinite-type surface)

Here be dragons!

- uncountable
- Mod(S) inherits nondiscrete topology from Homeo(S)

Question: Do big mapping class groups distinguish surfaces?

Question: Do big mapping class groups distinguish surfaces? YES!

Theorem (Bavard-D.-Rafi)

 S_1 and S_2 infinite-type surfaces. Any isomorphism $G_1 \to G_2$ between finite index subgroups G_i of $\operatorname{Mod}(S_i)$ is induced by a homeomorphism $S_1 \to S_2$.

Question: Do big mapping class groups distinguish surfaces? YES!

Theorem (Bavard-D.-Rafi)

 S_1 and S_2 infinite-type surfaces. Any isomorphism $G_1 \to G_2$ between finite index subgroups G_i of $\mathrm{Mod}(S_i)$ is induced by a homeomorphism $S_1 \to S_2$.

Corollary

For S an infinite-type surface:

$$\operatorname{Aut}(\operatorname{Mod}(S)) \cong \operatorname{Mod}(S)$$

Question: Do big mapping class groups distinguish surfaces? YES!

Theorem (Bavard-D.-Rafi)

 S_1 and S_2 infinite-type surfaces. Any isomorphism $G_1 \to G_2$ between finite index subgroups G_i of $\mathrm{Mod}(S_i)$ is induced by a homeomorphism $S_1 \to S_2$.

Corollary

For S an infinite-type surface:

$$\operatorname{Aut}(\operatorname{Mod}(S)) \cong \operatorname{Mod}(S) \cong \operatorname{Comm}(\operatorname{Mod}(S))$$

Question: Do big mapping class groups distinguish surfaces? YES!

Theorem (Bavard-D.-Rafi)

 S_1 and S_2 infinite-type surfaces. Any isomorphism $G_1 \to G_2$ between finite index subgroups G_i of $\mathrm{Mod}(S_i)$ is induced by a homeomorphism $S_1 \to S_2$.

Corollary

For S an infinite-type surface:

$$\operatorname{Aut}(\operatorname{Mod}(S)) \cong \operatorname{Mod}(S) \cong \operatorname{Comm}(\operatorname{Mod}(S))$$

Abstract Commensurator

 $\operatorname{Comm}(G) = \operatorname{group}$ of isomorphisms between finite-index subgroups

• E.g. $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$, but $\operatorname{Comm}(\mathbb{Z}) = \mathbb{Q}^*$

Ingredients

1) Algebraic identification of Dehn twists:

Key Lemma (Bavard-D.-Rafi)

 $f \in Mod(S)$ has finite-support \iff f's conjugacy class is countable.

Ingredients

1) Algebraic identification of Dehn twists:

Key Lemma (Bavard-D.-Rafi)

 $f \in \operatorname{Mod}(S)$ has finite-support \iff f's conjugacy class is countable.

2) Rigidity of curve complexes C(S):

Theorem (Hernandez–Morales–Valdez; Bavard–D.–Rafi)

 S_1 and S_2 infinite-type surfaces. Any automorphism $\mathcal{C}(S_1) \to \mathcal{C}(S_2)$ of their curve complexes is induced by a homeomorphism $S_1 \to S_2$.

