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3 values of c pR, pC , pA
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Julia sets
Rabbit  
  Im(c)>0

Corabbit 
Im(c)<0

Airplane      
Im(c)=0

pR
pC

pA

Images courtesy of Bill Floyd https://www.math.vt.edu/netmaps/index.php
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The twisted rabbit problem
Thurston

Twisted rabbit problem:                    
f 2 Mod(C, P ) what is            ?f � pR
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Solving TRP

1. Topological description of 

pR, pC , pA

pR

f � pR

2. Distinguish

f

branched covers

Hubbard trees

following Bartholdi—Nekyrashevych
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• edges are contained in Julia set 
• leaves are in P

pR pC pA

TR TC TA
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Hubbard trees as an invariant
      is combinatorially different from       and   TA TR TC

AND: 
•       rotates the edges of       clockwise 
•       rotates the edges of       counterclockwise

TR

TC

Proposition (Belk, Lanier, Margalit, W) 
The Hubbard tree and its direction of rotation under 
distinguish                  .

p�1

pR, pC , pA

p�1
R

p�1
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The general conjectures

p T
p{p�n(T )}

Conjecture 1: Given a polynomial    and a tree   ,         
                       will converge to the Hubbard tree for   . 
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The general conjectures

Conjecture 2: Given polynomials         , the Hubbard trees 
and direction of rotation under              are different.

Conjecture 1: Given a polynomial    and a tree   ,         
                       will converge to the Hubbard tree for   . 

p T
p{p�n(T )}

p1, p2
p�1
1 , p�1
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Homological representations

Let ⌃ be a hyperbolic orientable surface of finite type and let
Mod(⌃) be its mapping class group.

Suppose ⌃ has at least one puncture, or marked point. Given
a finite cover ⇡ : e⌃ ! ⌃, a finite index subgroup � < Mod(⌃)
lifts to Mod(e⌃). The action of � on H1(e⌃,Z) is called the
homological representation corresponding to ⇡. Denote this
representation ⇢⇡.

Question: How much information about Mod(⌃) can be
recovered from its homological representations?
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Images of individual elements of Mod(⌃)

Given a non-identity element f 2 Mod(⌃), it is easy to show that
there is a cover ⇡ to which f lifts such that ⇢⇡(f ) 6= Id . Suppose f
is a pseudo Anosov mapping class. Can we recover more
information about f ?

Let �⇡(f ) be the spectral radius of the operator ⇢⇡(f ). If f
has orientable stable and unstable foliations then �⇡(f ) is
�(f ), the dilatation of f . It is simple to show that
�⇡(f )  �(f ).

McMullen proved that sup⇡ �⇡(f ) can be smaller than �(f ).

Conjecture (McMullen): For f pseudo-Anosov
sup⇡ �⇡(f ) > 1.
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Previous progress and resolution

Recently, I proved the following result which provided evidence for
the McMullen conjecture.

Theorem

Let ⌃ be a surface with free non-abelian fundamental group. Let
f 2 Mod(⌃) be an infinite order mapping class. Then there exists
a cover ⇡ such that ⇢⇡(f ) has infinite order.

Building on this proof, I’ve proved the following.

Theorem

Let ⌃ be a surface with free non-abelian fundamental group. Let
f 2 Mod(⌃) be a pseudo Anosov mapping class. Then there exists
a finite cover ⇡ such that �⇡(f ) > 1.
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Some features of the proof

The cover ⇡ can be taken to be characteristic, and the deck
group can be taken to be solvable.

The proof can be made to be constructive.

The proof also works if we replace Mod(⌃) with Aut(Fn), and
f with a fully irreducible element of Aut(Fn).
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Plane curves

Object of study: Smooth projective complex 
plane curves of degree d

Monodromy:

Basic question: What is ?

Xd ! Pd

⇢d : ⇡1(Pd) ! Mod(⌃g)

�d := im(⇢d)

Universal curve: Surface bundle

Homomorphism

E.g. {[X : Y : Z] 2 CP 2 | Xd + Y d + Zd = 0}
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What is known?

Beauville: Computation of “cohomological monodromy”

Key points: Always finite-index in

For d even, surjective

For d odd, must preserve a spin structure

Question: Are there “non-cohomological” obstructions?

Sp(2g,Z)

Does                          for d even?           
�d = Mod(⌃g)
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Some prior work

Folklore observation: There are “higher spin structures” preserved 
by       for any d

Define                       as the stabilizer of

Theorem (S., ’16):

�d

Mod(⌃g)[�d] �d (a higher spin structure)

�5 = Mod(⌃6)[�5]

Method: reduce to Johnson’s work on Torelli group 
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New theorem

Theorem (S., Tuesday): �d = Mod(⌃g)[�d] for all d even

�d  Mod(⌃g)[�d] finite index for all d odd 

Points of interest: 

Mod(⌃g)[�d]

Tip of an iceberg: line bundles on toric varieties

Uses tropical geometry methods developed by Crétois-Lang

Answers a question of Donaldson from 2000

(results also for curves in                    , Hirzebruch surfaces, etc.)CP 1 ⇥ CP 1

Determine generators for
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Duality

Theorem (Borel–Serre)

Suppose G is a semisimple algebraic group defined over Q and �  G an
arithmetic subgroup. Then � is a Q-duality group: there is a number d
such that for any Q�-module M there are isomorphisms

Hk(�,M) ⇠= H
d�k

(�,D ⌦Q M),

where D = Hd(�,Q�).

If � is cocompact in G (R), then D = Q.

If � not cocompact, then D is countably generated and G (Q) y D.

Example: If � = SL2(Z) then d = 1 and D = H1(�,Q�) ⇠=
M

P

1(Q)

Q
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Example: Hyperbolic plane

� = SL2(Z) acts on hyperbolic plane H2:

https://golem.ph.utexas.edu/category/2008/02/modular forms.html

� acts cocompactly on cH2 = H2 �
S

x2P1(Q) Bx

, for horoballs B
x

H1(�,Q�) ⇠= H1
c

(cH2) ⇠= H0(cH2, @cH2) ⇠= H̃0(@cH2) ⇠= H̃0(P1(Q))
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Semiduality

Fact: � is a Q-duality group of dimension d i↵

Hn(�,Q�) = 0 if n 6= d , and

� is type FP over Q.

Definition: � is a Q-semiduality group of dimension d if

Hn(�,Q�) = 0 if n 6= d ,

� is type FP
d�1 over Q, and

cdQ(�) = d .

Theorem: If � is a semiduality group then for any M there are maps

� : H
d�k

(�,D ⌦Q M)! Hk(�,M)

that are isomorphisms for su�ciently ‘nice’ M.
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Positive characteristic

Conjecture: Suppose G is a simple algebraic group defined over a global
function field K of characteristic p and � is an S-arithmetic subgroup.
Then � is a Q-semiduality group.

Theorem (S.–Wortman)

Conjecture holds if G = SL2, in which case SL2(K ) y Hd(�,Q�).

Example: K = F2(t) and � = SL2(F2[t, t�1])
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The	Nielsen-Thurston	Classification

U
f(U
)

Pseudo-AnosovFinite	order

Mod(S)

Reducible



The	Nielsen-Thurston	Classification	
Problem

Running	time:	function	of	|f|.

INPUT

OUTPUT

Algorithm

Finite	order
order

Reducible
reducing	curves

Pseudo-Anosov
stretch	factor
foliations

f	=	s1s2...sn

Fix	finite	generating	set	for	Mod(S).



Main	Theorem

Theorem	(Margalit-S-Yurttaş):	There	exists	a	
quadratic-time	algorithm	for	the	Nielsen-
Thurston	Classification	Problem.	
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Thurston,	Mosher:	Compute	the	piecewise	linear	
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Exponentially	many	pieces ☹
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sink

source

Toby	Hall	(Dynn):	First	iterate,	
then	compute	eigenvectors.

Unknown	rate	of	convergence	
Unknown	behavior	in	reducible	case	

O(1)	iterations

Bell-Schleimer:	convergence	
can	be	exponentially	slow

Margalit-S-Yurttaş:	O(1)	
iterations	is	enough.

Iterate!

☹%&

$

#

'
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Macaw	(implementation)

1. Works	for	closed	surfaces
2. Solves	the	word	problem
3. Approximates	stretch	factors
4. Computes	the	order

Contributors	are	welcome!

Thank	you!
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Thurston’s normal form

Thurston, Birman-Lubotzky-McCarthy, Ivanov and others



Problem: Other M?



Problem: Other M?
?

?
Conf3(CP 2

)

forget����! Conf2(CP 2
)

Conf3(RP 2
)

forget����! Conf2(RP 2
)



Problem: Other M?
cross product

cross product
Conf3(CP 2

)

forget����! Conf2(CP 2
)

Conf3(RP 2
)

forget����! Conf2(RP 2
)
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Do we have other examples like these? Exotic sections?

cross product

cross product
Conf3(CP 2

)

forget����! Conf2(CP 2
)

Conf3(RP 2
)

forget����! Conf2(RP 2
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Reference:

https://arxiv.org/abs/1708.07921

Pre-print: Section problems for configuration 
spaces of surfaces

Thanks!!
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Question: Do big mapping class groups distinguish surfaces?

YES!

Theorem (Bavard–D.–Rafi)

S1 and S2 infinite-type surfaces. Any isomorphism G1 ! G2 between finite

index subgroups Gi of Mod(Si) is induced by a homeomorphism S1 ! S2.
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For S an infinite-type surface:

Aut(Mod(S)) ⇠= Mod(S)

⇠= Comm(Mod(S))

Abstract Commensurator
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E.g: Aut(Z) ⇠= Z/2Z, but Comm(Z) = Q⇤
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Ingredients

1) Algebraic identification of Dehn twists:

Key Lemma (Bavard–D.–Rafi)

f 2 Mod(S) has finite-support () f ’s conjugacy class is countable.

2) Rigidity of curve complexes C(S):

Theorem (Hernandez–Morales–Valdez; Bavard–D.–Rafi)

S1 and S2 infinite-type surfaces. Any automorphism C(S1) ! C(S2) of
their curve complexes is induced by a homeomorphism S1 ! S2.
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