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Group actions

Goal: Understand groups through their actions on metric spaces.

Every group admits two actions on metric spaces:

G y ⇤

Action gives no information
about the group

Metric space completely
understood

G y Cayley graph

Action encodes all the
information about the group

Metric space may be extremely
complicated
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Ordering group actions

We define a partial order on set of isometric actions of G .

Definition
Given isometric actions of a group G on metric spaces R and S , we say

G y S � G y R

if there is a coarsely G–equivariant Lipschitz map R ! S .

Example:

F2 y

⇤
�

F2 y

�

F2 y
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Poset of hyperbolic structures

Definition
Define

H(G ) = {G y S | cobounded, and S is hyperbolic}/ ⇠,

where ⇠ be the equivalence induced from �. H(G ) is the poset of

hyperbolic structures on G .

Goal: Understand G by studying the properties of H(G ).

Questions

How big is H(G ) for various (classes of) groups G?

Is H(G ) a lattice?

When does H(G ) contain a largest element?
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cubic plane curves?
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Question

• A cubic plane curve is given by

CF = {[x : y : z ] | F (x , y , z) = 0} ⇢ CP2

where F (x , y , z) is a homogeneous polynomial of degree 3.
• Every smooth cubic plane curve has 9 points of inflection where

Hessian = 0.
• Smooth cubic plane curves come naturally with 9 marked points.

This leads one to wonder:
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Reformulating the question

Define X := {F (x , y , z)| homogeneous, degree 3, and smooth} ⇢ C10.

• Consider the following fiber bundle over X :

UConf

n
CF En

X

⇠n

where UConf

n
CF := the configuration space of n distinct unlabeled

points on CF .

• The question reformulated: For what natural number n does the
bundle ⇠n admit a continuous section?

• Conjectures (Farb):

I. ⇠n has no section if n < 9.
II. ⇠n has no section if n > 9.
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Answers and further questions...

Theorem (C-, 2017)

(1) Conjecture I is true: ⇠n has no section unless 9|n.
(2) Conjecture II is false: ⇠n has a section when n/9 is a sum of Jordan

2-totient functions, e.g. when

n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...

(1) =) ⇠1 has no section.
Hence, it is not possible to continuously choose an elliptic curve structure
for all smooth cubic plane curves.

Further questions:

• What about other values of n (for example, n = 18)?

• Classify all sections of ⇠n. Are they homotopic to the obvious ones
given by algebra?

• Similar question for other enumerative problems.
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for all smooth cubic plane curves.

Further questions:

• What about other values of n (for example, n = 18)?

• Classify all sections of ⇠n. Are they homotopic to the obvious ones
given by algebra?

• Similar question for other enumerative problems.
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Thank you.
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Classical representations (or arithmetic quotients)

OutpFnq ⇣ GLnpZq

Modp⌃g q ⇣ Sp
2g pZq

Other representations?

One possibility is to act on H
1

of finite covers (or of finite index
subgroups of Fn)
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Some Results, I

From actions on H
1

of finite index subgroups of Fn, one can obtain

Theorem (Grunewald–Lubotzky)

Let n • 4 and m • 1. There are virtual surjective representations

OutpFnq Ñ PGLmpn´1qpOq. where O can be

Z
a ring of integers in a finite abelian extension of Q (depending

on m)

an order in a finite-dimensional division algebra over Q (not

all such division algebras and can depend on m)

J. Malestein Arithmetic Quotients 3 / 6



Some Results, I

From actions on H
1

of finite index subgroups of Fn, one can obtain

Theorem (Grunewald–Lubotzky)

Let n • 4 and m • 1. There are virtual surjective representations

OutpFnq Ñ PGLmpn´1qpOq. where O can be

Z
a ring of integers in a finite abelian extension of Q (depending

on m)

an order in a finite-dimensional division algebra over Q (not

all such division algebras and can depend on m)

J. Malestein Arithmetic Quotients 3 / 6



Some Results, II

From actions on H
1

of finite covers of ⌃g , one can obtain

Theorem (Grunewald–Larsen–Lubotzky–M)

For any g • 2,m • 1, n • 3, D virtual surjections of Modp⌃g q

onto:

(a) Spp2mpg ´ 1q,Zq

(b) Spp4mpg ´ 1q,Oq where O is the ring of integers in Qp⇣nq

`
.

(c) SUpmpg ´ 1q,mpg ´ 1q,Zr⇣nsq.

(d) arithmetic groups of type SOp2mpg ´ 1q, 2mpg ´ 1qq.

⇣n is a primitive nth root of unity.
This list is not exhaustive.

Looijenga earlier found virtual surjective representations
Modp⌃g q Ñ SUpg ´ 1, g ´ 1,Zr⇣nsq.
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A couple details about the previous results

The action on H
1

of a finite cover is really a product of such
representations.

To get surjectivity, both results only work for a certain (infinite)
class of finite covers.
E.g. Grunewald–Lubotzky require the finite index subgroup to
contain a free generator.

Determining the (virtual) image in AutpH
1

q for a general finite
cover is still open.
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A Couple Potential Applications

A result of Putman–Wieland says: if nonzero Modp⌃g q-orbits in
H
1

pcoverq are always infinite for all finite covers, then Modp⌃g q

cannot virtually map onto Z (otherwise it does)

The analogous statement for infinite orbits and AutpFnq is proven.
(Farb–Hensel)

One can deduce facts about OutpFnq{xtransvectionsky using results
of M–Putman.
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Configuration spaces

Definition (configuration space)

M – connected non-compact finite-type manifold of dim � 2

Fk (M) – (ordered) configuration space of M on k points

Fk (M) := {(m1,m2, . . . ,mk ) 2 Mk | mi 6= mj for all i 6= j}

1
3 2

1
3 2

1
3 2

1
3 2

Figure: A point in F3(M)

Sk y Fk (M)

Goal: Understand H⇤(Fk (M))

4
2

3 5
1

Figure: A class in H2(F5(M))

Miller–Wilson Stability in the Homology of Config Spaces No Boundaries 2 / 4



Representation Stability

11
3 3

22
4

Figure: Stabilization Map t : Fk (M) ! Fk+1(M)

Strategy: Fix M. Package the sequence {H⇤(Fk (M))}k into a module
over a category encoding Sk–actions and embeddings.

Theorem (Church–Ellenberg–Farb, M–W (non-orientable case))
For each fixed i, {Hi(Fk (M))}k is representation stable.

Z[Sk+1] · t⇤(Hi(Fk (M);Z)) = Hi(Fk+1(M);Z) for k � 2i .
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Higher-Order Representation Stability

1

2

3 3
4

1 5

2 22

Figure: Secondary stabilization map t 0 : Hi(Fk (M)) ! Hi+1(Fk+2(M))

Theorem (M–W)
{H⇤(Fk (M);Q)}k has secondary representation stability.

For each fixed i, the sequence of “unstable” homology in
n

H k+i
2
(Fk (M);Q)

o

k

is finitely generated under the actions of maps t 0 and the groups Sk .
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Arithmetic groups and 
characteristic classes of 

manifold bundles 

Bena Tshishiku 
Harvard University 





Dark Matter Problem



Dark Matter Problem

H*(Mod(Sg); Q)



Dark Matter Problem

H*(BDiff(Sg); Q) ≃ H*(Mod(Sg); Q)



Dark Matter Problem

H*(BDiff(Sg); Q) ≃ ≃ H*(M(Sg); Q)H*(Mod(Sg); Q)



0 

Dark Matter Problem

H*(BDiff(Sg); Q) ≃ ≃ H*(M(Sg); Q)H*(Mod(Sg); Q)



0 4g-5 

=vcd(Mod(Sg))

Dark Matter Problem

H*(BDiff(Sg); Q) ≃ ≃ H*(M(Sg); Q)H*(Mod(Sg); Q)



0 

0 4g-5 

=vcd(Mod(Sg))

Dark Matter Problem

H*(BDiff(Sg); Q) ≃ ≃ H*(M(Sg); Q)H*(Mod(Sg); Q)



0 

0 

stable classes

2g/3

}

4g-5 

=vcd(Mod(Sg))

Dark Matter Problem

H*(BDiff(Sg); Q) ≃ ≃ H*(M(Sg); Q)H*(Mod(Sg); Q)



0 

0 

stable classes

2g/3

}

4g-5 

=vcd(Mod(Sg))
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stable classes

2g/3

}

4g-5 

=vcd(Mod(Sg))

???

χ(M(Sg)) ∼ (-1)g+1gg

Dark Matter Problem

H*(BDiff(Sg); Q) ≃ ≃ H*(M(Sg); Q)H*(Mod(Sg); Q)



0 

0 

stable classes

2g/3

}

4g-5 

=vcd(Mod(Sg))

???

χ(M(Sg)) ∼ (-1)g+1gg

Dark Matter Problem: Find new classes outside the 
stable range. (e.g. classes in odd degree??)

H*(BDiff(Sg); Q) ≃ ≃ H*(M(Sg); Q)H*(Mod(Sg); Q)
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there’s a finite-index subgroup DiffΓ(M) ≤ Diff(M)

so that dim Hg(BDiffΓ(M);Q) ≥ N.
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there’s a finite-index subgroup DiffΓ(M) ≤ Diff(M)

so that dim Hg(BDiffΓ(M);Q) ≥ N.

Characteristic classes of real vector bundles with 
arithmetic structure group

Theorem (Tshishiku). Mg   = (S2k × S2k)# … #(S2k × S2k)4k

For k ≫g, for every N>0, 

g odd}
Happy birthday, Benson!
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As we all know, examples are important...

In this talk : An example from undergraduate education
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Background: Characteristics of Calculus at Michigan

Single Variable Calculus

• Small Classes ( 18 students)
• Emphasis on Group Work

- In and out of class
- Instructor training

• Conceptual Focus
- Gateways for computational skills

• Challenging Problems
• Variety of Applications

Multivariable Calculus
• Large lecture

- plus group work in lab
• ⇠ 64% of the students are

from Engineering
• “Standard” focus
• Applications From Physics
• Covers Stokes and

Divergence Theorems
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This multivariable calculus course is NOT ideal for many students.
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A New Course

• Group of Students:
• Mathematics
• Economics
• Statistics
• Other Social Sciences
• (and others who do not (or not yet) need surface integrals)

• Style:
• IBLish (Inquiry Based Learning)
• Small Classes ( 18 students)

• Material:
• Some Linear Algebra
• Some Basic Proofs, including � � ✏
• Through Green’s Theorem
• Applications from Economics and Probability/Statistics

Course begins January 2018
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Happy Birthday, Benson!

Just one more thing:

Thank you for everything!
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