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Normal generators
for mapping class groups
are abundant.

Justin Lanier
Georgia Tech
(joint with Dan Margalit)
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normal generator:

( conjugates of f ) = Mod(S5,)



Dehn twist



order 2, g > 3
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(McCarthy-Papadopoulos, 1987)




order > 3, g large




hyperelliptic involution




Theorem (L.-Margalit, 2017)

For g > 3, every periodic mapping class
that is not a hyperelliptic involution
normally generates Mod(S,).



Well-suited curve criteria

c fle) . normal
ot generator







Question (Long, 1986)

Can the normal closure of a (pseudo-)Anosov
map ever be all of Mod(S,)?



Question (Long, 1986)

Can the normal closure of a (pseudo-)Anosov
map ever be all of Mod(S,)?

Answer: Yes!



(Penner, 1988)



Theorem (L.-Margalit, 2017)

For g > 3, every pseudo-Anosov element
with stretch factor less than 1.1
normally generates Mod(S,).



f with stretch factor short curve c

less than 3/2 — with i(c, f(c)) < 2

(k’arb-Leininger-Mar galit, 2011)
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Normal generators
for mapping class groups
are abundant.



/:\ Theorem (L.-Margalit, 2017)

DAK For g > 3, every periodic mapping class
that is not a hyperelliptic involution
normally generates Mod(.S,).

Theorem (L.-Margalit, 2017)

For g > 3, every pseudo-Anosov element
with stretch factor less than 1.1
normally generates Mod(.S,).

X @ Thanks.
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Hyperbolic structures on groups

Carolyn R. Abbott
University of California, Berkeley

October 28, 2017

Joint work with S. Balasubramanya and D. Osin

C. Abbott (UCB) Hyperbolic structures October 28, 2017 1/1



Goal: Understand groups through their actions on metric spaces.
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Goal: Understand groups through their actions on metric spaces.

Every group admits two actions on metric spaces:

G N x G ~ Cayley graph
@ Action gives no information @ Action encodes all the
about the group information about the group
@ Metric space completely @ Metric space may be extremely
understood complicated
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Ordering group actions

We define a partial order on set of isometric actions of G.

Definition

Given isometric actions of a group G on metric spaces R and S, we say
GhAS=XGNAR

if there is a coarsely G—equivariant Lipschitz map R — S.
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Ordering group actions

We define a partial order on set of isometric actions of G.

Definition

Given isometric actions of a group G on metric spaces R and S, we say
GhAS=XGNAR

if there is a coarsely G—equivariant Lipschitz map R — S.

Example:

Fo Fo
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Poset of hyperbolic structures
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Poset of hyperbolic structures

Define

H(G)={G~S
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Poset of hyperbolic structures

Definition
Define

H(G) ={G ~ S | cobounded, and S is hyperbolic}/ ~,

where ~ be the equivalence induced from <. H(G) is the poset of
hyperbolic structures on G.
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Poset of hyperbolic structures

Definition
Define

H(G) ={G ~ S | cobounded, and S is hyperbolic}/ ~,

where ~ be the equivalence induced from <. H(G) is the poset of
hyperbolic structures on G.

Goal: Understand G by studying the properties of #(G).
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where ~ be the equivalence induced from <. H(G) is the poset of
hyperbolic structures on G.

Goal: Understand G by studying the properties of #(G).

@ How big is #(G) for various (classes of) groups G?
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H(G) ={G ~ S | cobounded, and S is hyperbolic}/ ~,

where ~ be the equivalence induced from <. H(G) is the poset of
hyperbolic structures on G.
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Poset of hyperbolic structures

Definition
Define

H(G) ={G ~ S | cobounded, and S is hyperbolic}/ ~,

where ~ be the equivalence induced from <. H(G) is the poset of
hyperbolic structures on G.

Goal: Understand G by studying the properties of #(G).

@ How big is #(G) for various (classes of) groups G?
o Is H(G) a lattice?

@ When does 7(G) contain a largest element?

C. Abbott (UCB) Hyperbolic structures October 28, 2017 4/1



0 BOUNDARIES
“= LIGHTNING TALKS /

\ - )
f SUNDAY SESSION ///




How many points can be chosen continuously on smooth

cubic plane curves?

Weiyan Chen
University of Minnesota, Twin Cities.

No Boundaries: Groups in Algebra, Geometry, and Topology,
A Celebration of the Mathematical Contributions of Benson Farb
University of Chicago
October 29, 2017.
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Question

Weiyan Chen Multi-sections on cubic curves



e A cubic plane curve is given by
Cr={lx:y:2]| Flx.y.2) =0} C CP®

where F(x,y, z) is a homogeneous polynomial of degree 3.

Weiyan Chen Multi-sections on cubic curves October 29, 2017 2/6



e A cubic plane curve is given by
Ce={[x:y:2]| F(x,y,z) =0} C CP?
where F(x,y, z) is a homogeneous polynomial of degree 3.

e Every smooth cubic plane curve has 9 points of inflection where
Hessian = 0.
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e Every smooth cubic plane curve has 9 points of inflection where
Hessian = 0.
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e A cubic plane curve is given by

Ce={[x:y:2]| F(x,y,z) =0} C CP?
where F(x,y, z) is a homogeneous polynomial of degree 3.

e Every smooth cubic plane curve has 9 points of inflection where
Hessian = 0.

e Smooth cubic plane curves come naturally with 9 marked points.
This leads one to wonder:

- "Is it possible to continuously choose 7 points on any
smooth cubic plane curve?"
- "ls n =9 the only possible case?"

- "Is the algebraic construction the only example allowed
by topology?"

Weiyan Chen

Multi-sections on cubic curves

October 29, 2017 2/6
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Reformulating the question
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UConf"Cr
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&
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where UConf" Cr := the configuration space of n distinct unlabeled
points on Cr.
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X

where UConf" Cr := the configuration space of n distinct unlabeled
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Reformulating the question

Define X := {F(x, y, z)| homogeneous, degree 3, and smooth} C C*0.
e Consider the following fiber bundle over X:

UConf"Cg

E,
3
snj;?

/

X

where UConf" Cr := the configuration space of n distinct unlabeled
points on Cr.

e The question reformulated: For what natural number n does the
bundle &, admit a continuous section?
e Conjectures (Farb):

I. &, has no section if n < 9.
[l. &, has no section if n > 9.

Weiyan Chen Multi-sections on cubic curves October 29, 2017 4/6



Answers and further questions...
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Answers and further questions...

Theorem (C-, 2017)

(1) Conjecture | is true: &, has no section unless 9|n.
(2) Conjecture Il is false:
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2-totient functions,
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e Classify all sections of £,. Are they homotopic to the obvious ones
given by algebra?
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Answers and further questions...

Theorem (C-, 2017)

(1) Conjecture | is true: &, has no section unless 9|n.

(2) Conjecture Il is false: &, has a section when n/9 is a sum of Jordan
2-totient functions, e.g. when
n/9 =1,3,4,8,9,11,12,13,15, 16, 20, 21,23, 24, ...

(1) = & has no section.
Hence, it is not possible to continuously choose an elliptic curve structure
for all smooth cubic plane curves.

Further questions:

e What about other values of n (for example, n = 18)?

e Classify all sections of £,. Are they homotopic to the obvious ones
given by algebra?

e Similar question for other enumerative problems.
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Thank you.
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Arithmetic Quotients:
of Out(F,), Mod(X)

Justin Malestein
(University of Oklahoma)

(includes work joint with Putman, and Grunewald—-Larsen—Lubotzky)

J. Malestein Arithmetic Quotients

1/6



Classical representations (or arithmetic quotients)

Out(F,) — GL(2)

Mod(Xg) — Spog(Z)
Other representations?

[} [ = = Q™
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Classical representations (or arithmetic quotients)

Out(F,) — GL,(Z)

Mod(Xg) — Spog(Z)
Other representations?

One possibility is to act on Hj of finite covers (or of finite index
subgroups of F,)
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Some Results, |
From actions on Hj of finite index subgroups of F,, one can obtain

Theorem (Grunewald-Lubotzky)
Let n = 4 and m = 1. There are virtual surjective representations
Out(F,) — PGLy(n—1)(O). where O can be

o7

@ a ring of integers in a finite abelian extension of Q (depending
onm)
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Some Results, |
From actions on Hj of finite index subgroups of F,, one can obtain

Theorem (Grunewald-Lubotzky)

Let n = 4 and m = 1. There are virtual surjective representations
Out(F,) — PGLp(5-1)(O). where O can be

e Z

@ a ring of integers in a finite abelian extension of Q (depending
onm)

@ an order in a finite-dimensional division algebra over Q (not
all such division algebras and can depend on m)
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Some Results, |l

From actions on Hj of finite covers of ¥4, one can obtain

Theorem (Grunewald—Larsen—Lubotzky—M)

For any g = 2,m>1,n > 3, 3 virtual surjections of Mod(%,)
onto:

(a) Sp(2m(g —1),2)

b) Sp(4m(g — 1), O) where O is the ring of integers in Q((,)".

(b)
(c) SU(m(g —1), m(g — 1), Z[Cn])-
(d) arithmetic groups of type SO(2m(g — 1),2m(g — 1)).

(, is a primitive nth root of unity.
This list is not exhaustive.
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Some Results, |l
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Theorem (Grunewald—Larsen—Lubotzky—M)

For any g = 2,m>1,n > 3, 3 virtual surjections of Mod(%,)
onto:

(a) Sp(2m(g —1),2)

b) Sp(4m(g — 1), O) where O is the ring of integers in Q((,)".

(b)
(c) SU(m(g —1), m(g — 1), Z[Cn])-
(d) arithmetic groups of type SO(2m(g — 1),2m(g — 1)).

(, is a primitive nth root of unity.
This list is not exhaustive.

Looijenga earlier found virtual surjective representations
Mod(Xz;) — SU(g — 1,8 — 1, Z[(x)).
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A couple details about the previous results

The action on Hj of a finite cover is really a product of such
representations.
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representations.

To get surjectivity, both results only work for a certain (infinite)
class of finite covers.

E.g. Grunewald—Lubotzky require the finite index subgroup to
contain a free generator.
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A couple details about the previous results

The action on Hj of a finite cover is really a product of such
representations.

To get surjectivity, both results only work for a certain (infinite)
class of finite covers.

E.g. Grunewald—Lubotzky require the finite index subgroup to
contain a free generator.

Determining the (virtual) image in Aut(H;) for a general finite
cover is still open.
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A Couple Potential Applications
A result of Putman-Wieland says: if nonzero Mod(X,)-orbits in

H1(cover) are always infinite for all finite covers, then Mod(X,)
cannot virtually map onto Z (otherwise it does)
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A Couple Potential Applications
A result of Putman-Wieland says: if nonzero Mod(X,)-orbits in

H1(cover) are always infinite for all finite covers, then Mod(X,)
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A result of Putman-Wieland says: if nonzero Mod(X,)-orbits in
H1(cover) are always infinite for all finite covers, then Mod(X,)
cannot virtually map onto Z (otherwise it does)

The analogous statement for infinite orbits and Aut(F,) is proven.
(Farb—Hensel)

One can deduce facts about Out(F,)/{transvections*) using results

of M=Putman.
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Configuration spaces

Definition (configuration space)
M — connected non-compact finite-type manifold of dim > 2
Fx(M) — (ordered) configuration space of M on k points

Fi(M) := {(my,mg,...,mx) € MK | m; # m; for all i+# j}

Goal: Understand H.(Fx(M))

Figure: A point in F3(M)

Figure: A class in Ho(F5(M
Sk~ Fe(M) g b(Fs(M))

Miller—Wilson Stability in the Homology of Config Spaces No Boundaries 2/4



Representation Stability

Strategy: Fix M. Package the sequence {H.(Fx(M))} into a module
over a category encoding Sx—actions and embeddings.

Theorem (Church—Ellenberg—Farb, M—W (non-orientable case))
For each fixed i, { Hi(Fx(M))}« is representation stable.

Z[Ski1] - t(Hi(Fk(M); Z)) = H{(Fir1(M);Z)  fork > 2i.

Miller—Wilson Stability in the Homology of Config Spaces No Boundaries 3/4



Higher-Order Representation Stability

ol-|§
D——>'3 L=l
57y 4

Figure: Secondary stabilization map t' : Hi(Fx(M)) — Hiy1(Fk2(M))

Theorem (M-W)
{H.(Fx(M); Q)}« has secondary representation stability.
For each fixed i, the sequence of “unstable” homology in

{Hiss (F(M): @)}

k

is finitely generated under the actions of maps t' and the groups Sk.

Miller—Wilson Stability in the Homology of Config Spaces No Boundaries
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Dark Matter Problem

H*(BDiH(Sg)Q Q) = H*(MOd(Sg)B Q) = H*(%(SQ)Q Q)

stable classes 0
~ 77
0 29/3 X (7#(Sg)) ~ (-1)7" g7 49-5

ved(Mod(.S)))



Dark Matter Problem: Find new classes outside the

stable range. (e.g. classes in odd degree??)

H*(BDiff(Sg)B Q) = H*(MOd(Sg)B Q) = H*(%(SQ)B Q)

stable classes 0
~ 77
0203 ys) - (Dt g

ved(Mod(.S)))
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Characteristic classes of real vector bundles with

arithmetic structure group

g odd
4k L
Theorem (Tshishiku). M, = (S?! x S?¥)# ... #(S? x S2¥)
For k£ »g¢, for every N>0,
there’s a finite-index subgroup Difft (M) < Diff(M)

so that dim HY(BDiff'(M);Q) = N.

Happy birthday, Benson!
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As we all know, examples are important...
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As we all know, examples are important...

In this talk : An example from undergraduate education
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Single Variable Calculus
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Background: Characteristics of Calculus at Michigan

Single Variable Calculus

Small Classes (< 18 students)

Emphasis on Group Work
- In and out of class

- Instructor training

Conceptual Focus
- Gateways for computational skills

Challenging Problems
Variety of Applications

Groups ... in Other Places

Multivariable Calculus

Large lecture
- plus group work in lab

~ 64% of the students are
from Engineering

“Standard” focus
Applications From Physics

Covers Stokes and
Divergence Theorems

Example 3



This multivariable calculus course is NOT ideal for many students.
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o Material:
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Some Basic Proofs, including § — ¢

Through Green’s Theorem

Applications from Economics and Probability/Statistics
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e Group of Students:
e Mathematics
e Economics
Statistics
Other Social Sciences
(and others who do not (or not yet) need surface integrals)

o Style:
¢ [BLish (Inquiry Based Learning)
e Small Classes (< 18 students)
o Material:

e Some Linear Algebra

e Some Basic Proofs, including 6 — ¢

e Through Green’s Theorem

e Applications from Economics and Probability/Statistics

| Course begins January 2018
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Happy Birthday, Benson!

Just one more thing:

Thank you for everything!




