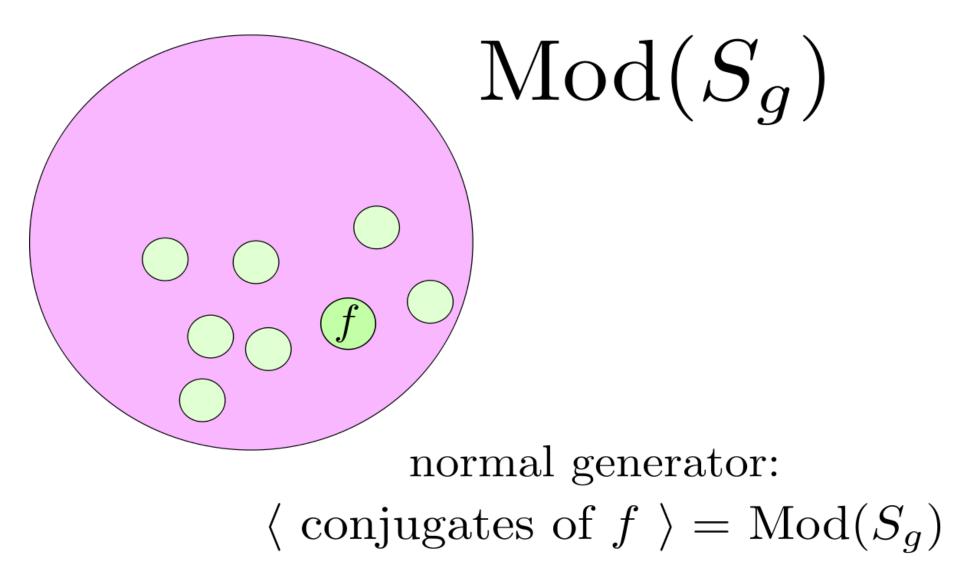
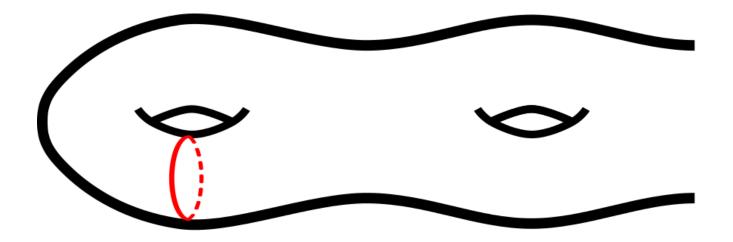


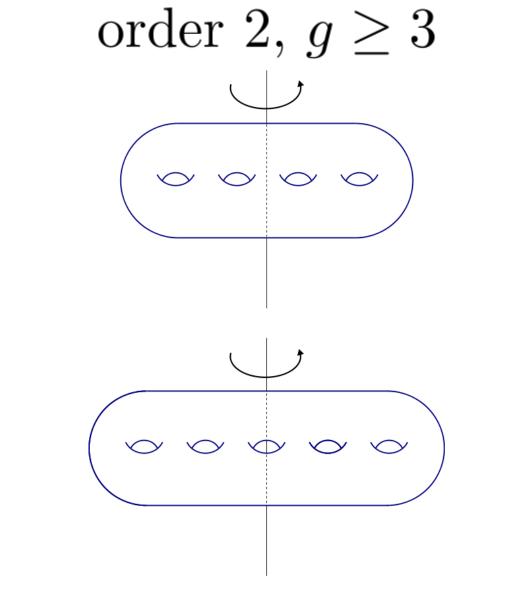
Normal generators for mapping class groups are abundant.

Justin Lanier Georgia Tech (joint with Dan Margalit)

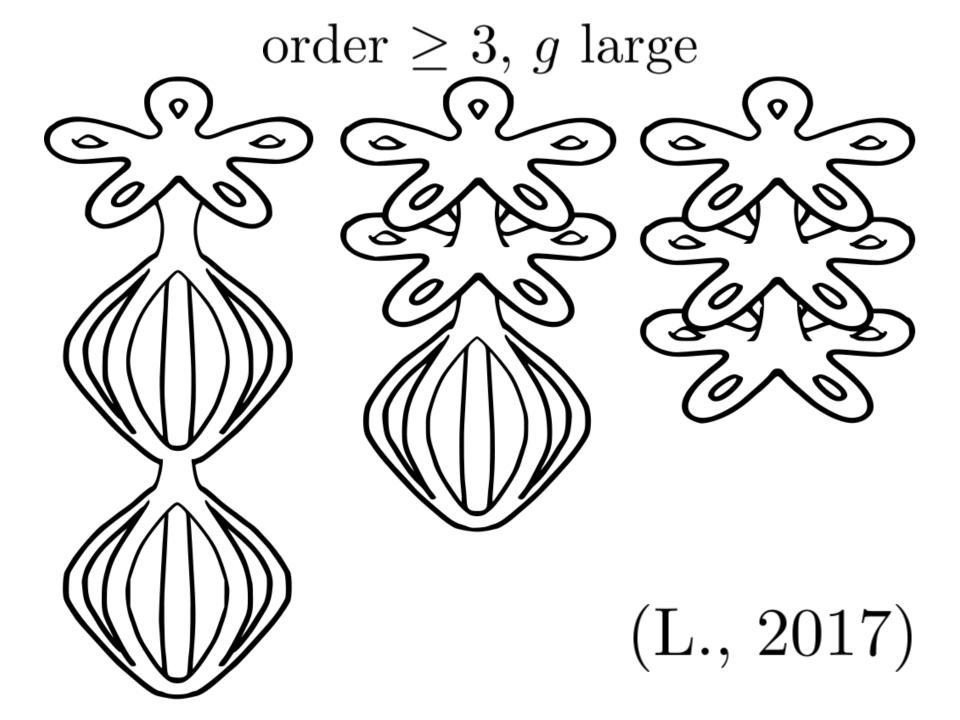


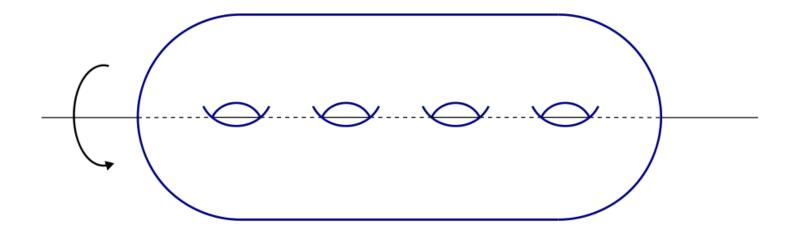


Dehn twist



(McCarthy-Papadopoulos, 1987)



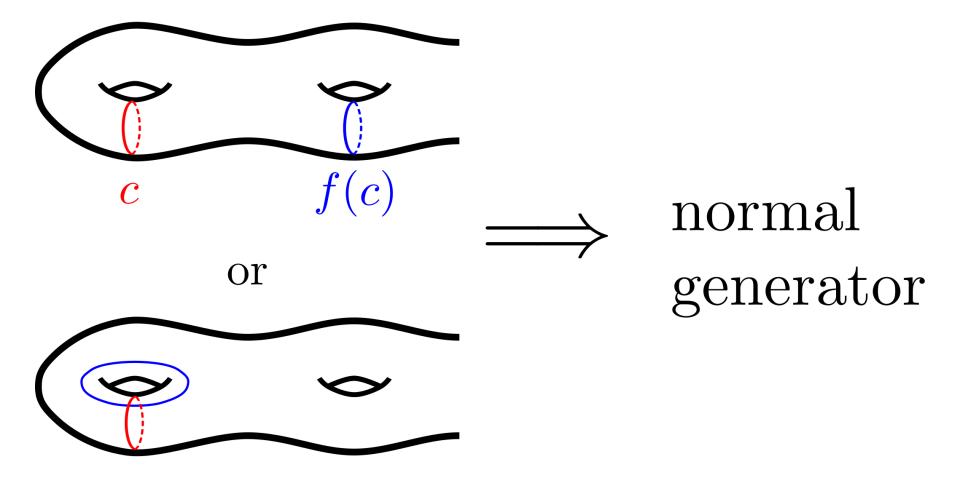


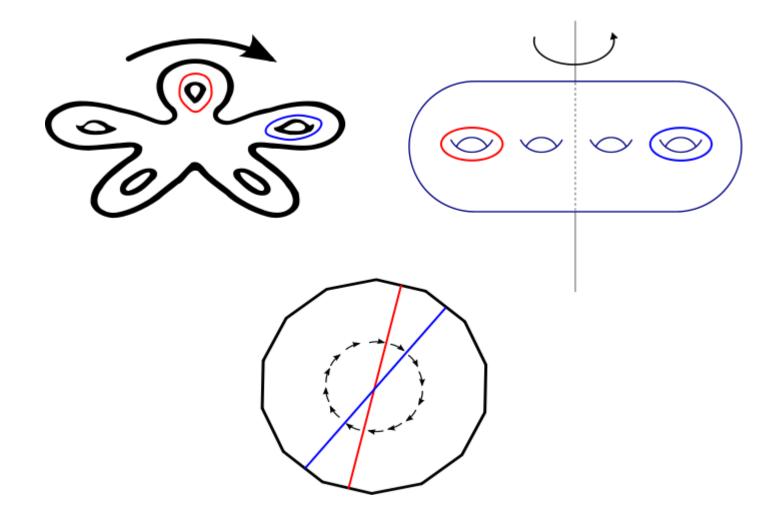
hyperelliptic involution

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every periodic mapping class that is not a hyperelliptic involution normally generates $Mod(S_q)$.

Well-suited curve criteria





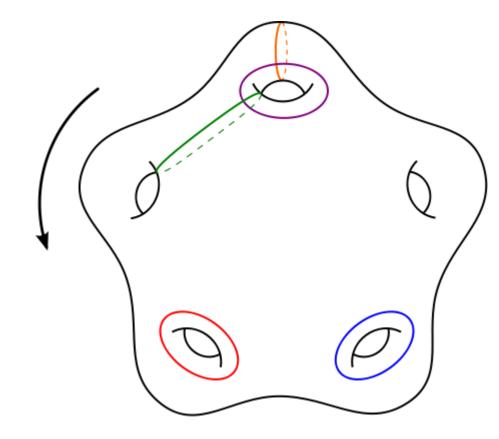
Question (Long, 1986)

Can the normal closure of a (pseudo-)Anosov map ever be all of $Mod(S_g)$? Question (Long, 1986)

Can the normal closure of a (pseudo-)Anosov map ever be all of $Mod(S_g)$?

Answer: Yes!

(Penner, 1988)

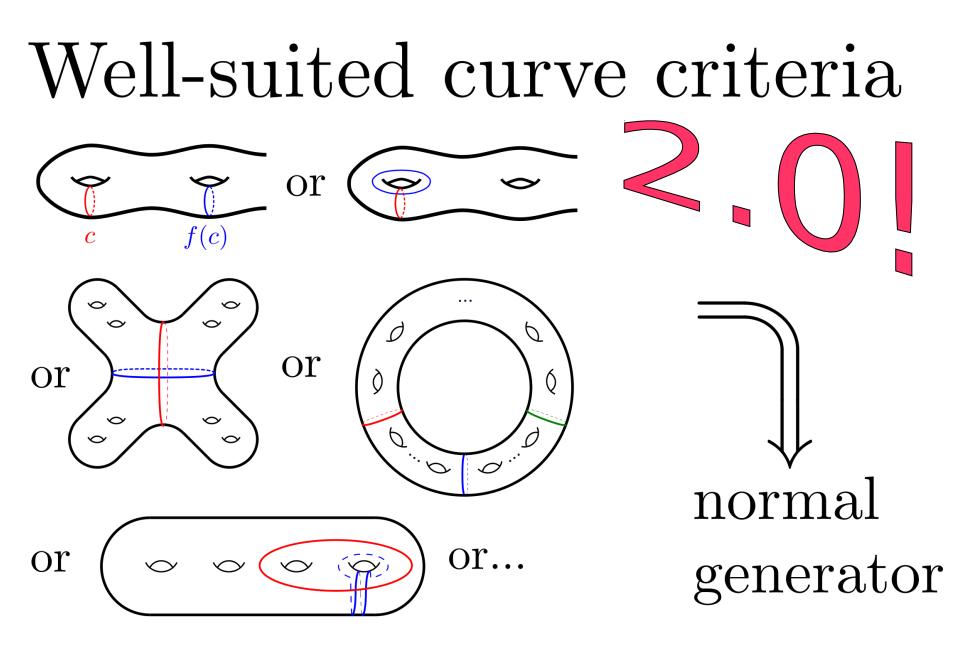


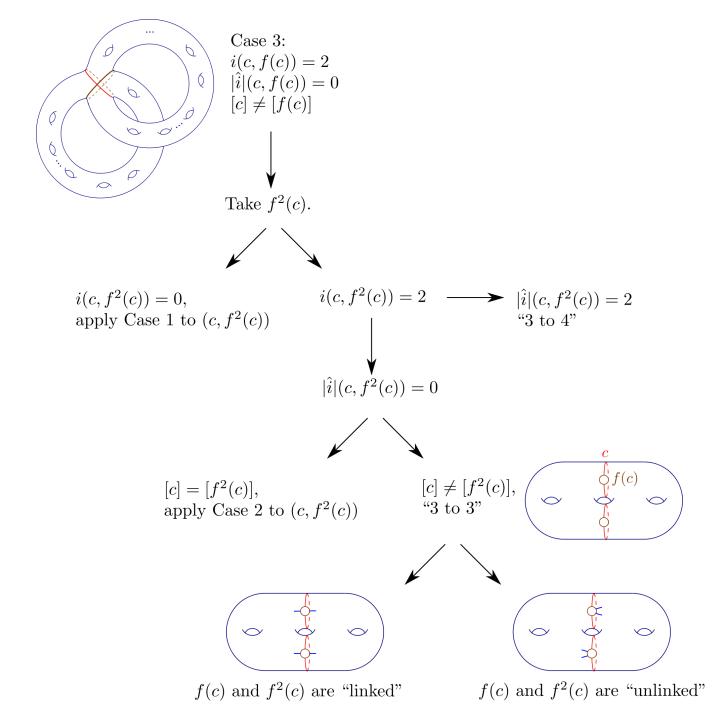
Theorem (L.-Margalit, 2017)

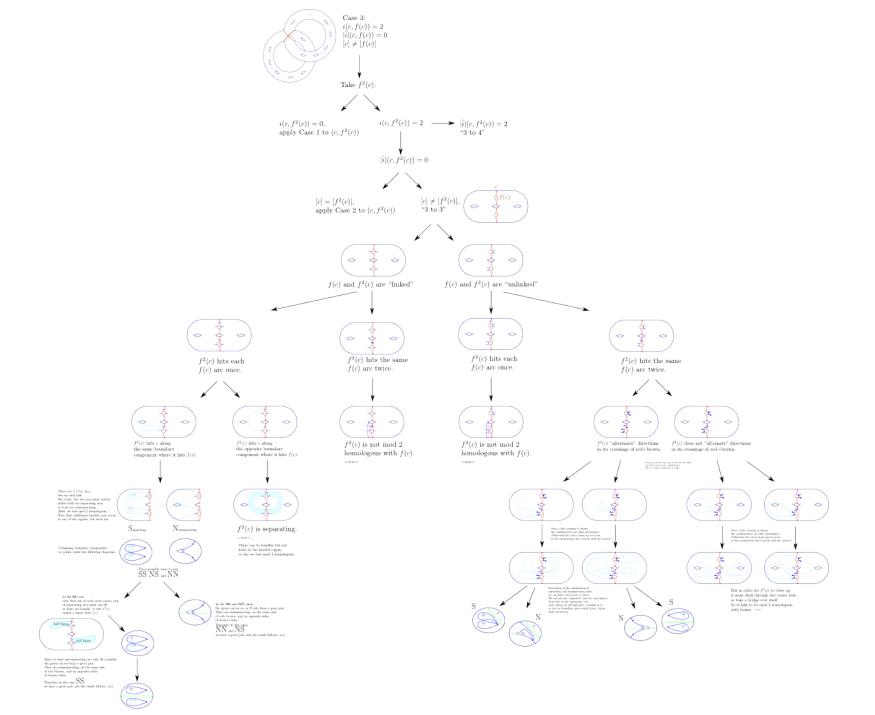
For $g \geq 3$, every pseudo-Anosov element with stretch factor less than 1.1 normally generates $Mod(S_q)$.

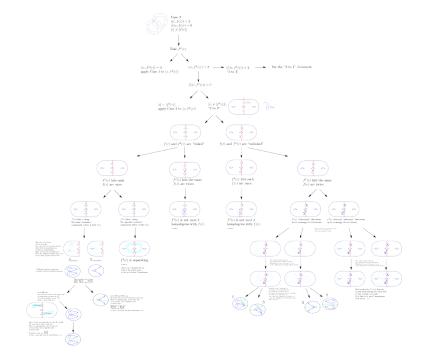
f with stretch factor = less than 3/2

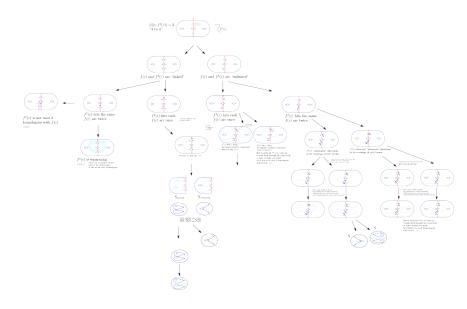
short curve cwith $i(c, f(c)) \leq 2$

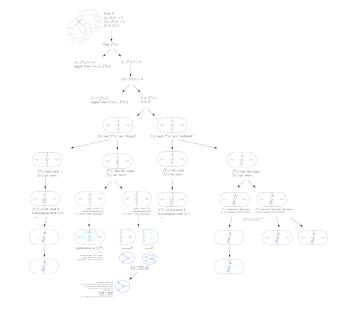


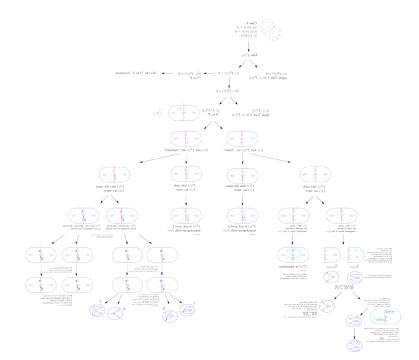




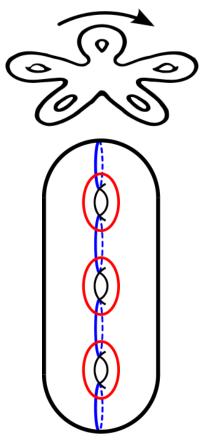








Normal generators for mapping class groups are abundant.



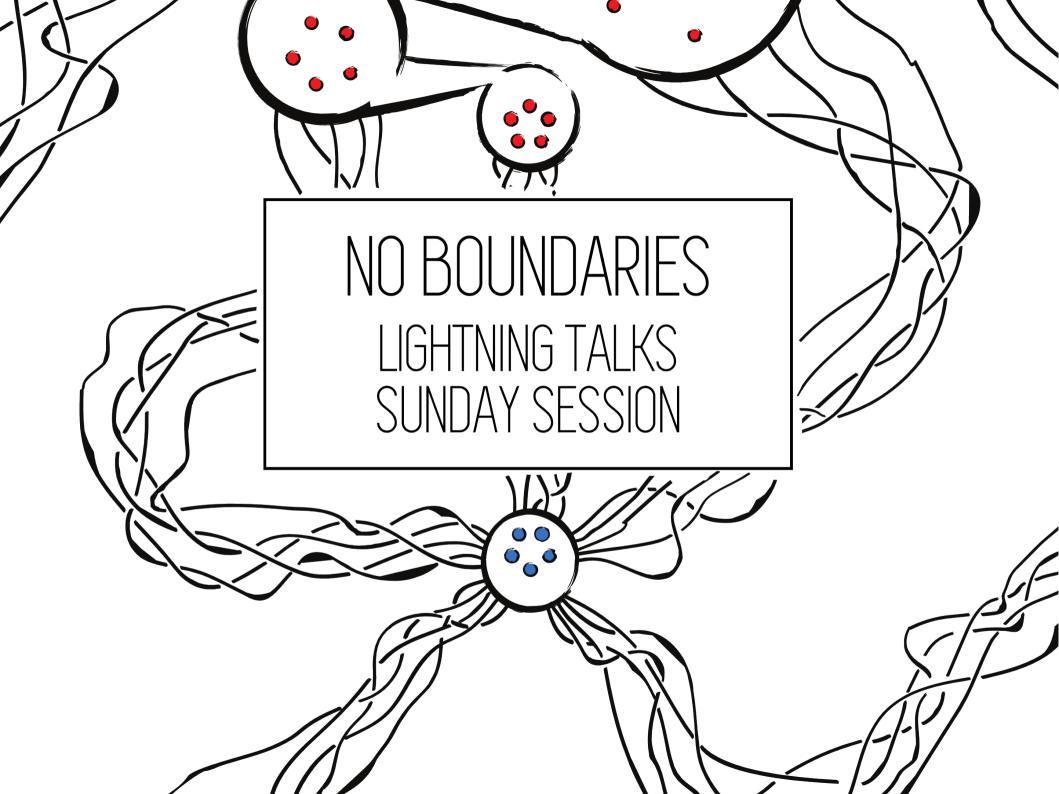
Theorem (L.-Margalit, 2017)

For $g \geq 3$, every periodic mapping class that is not a hyperelliptic involution normally generates $Mod(S_g)$.

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every pseudo-Anosov element with stretch factor less than 1.1 normally generates $Mod(S_g)$.

Thanks.



Hyperbolic structures on groups

Carolyn R. Abbott

University of California, Berkeley

October 28, 2017

Joint work with S. Balasubramanya and D. Osin

Every group admits two actions on metric spaces:

 $G \curvearrowright Cayley graph$

Every group admits two actions on metric spaces:

$$G \cap *$$

• Action gives no information about the group

- $G \curvearrowright$ Cayley graph
- Action encodes all the information about the group

Every group admits two actions on metric spaces:

$$G \cap *$$

- Action gives no information about the group
- Metric space completely understood

 $G \curvearrowright$ Cayley graph

- Action encodes all the information about the group
- Metric space may be extremely complicated

We define a partial order on set of isometric actions of G.

Definition

Given isometric actions of a group G on metric spaces R and S, we say

$$G \curvearrowright S \preceq G \curvearrowright R$$

if there is a coarsely G-equivariant Lipschitz map $R \rightarrow S$.

We define a partial order on set of isometric actions of G.

Definition

Given isometric actions of a group G on metric spaces R and S, we say

$$G \curvearrowright S \preceq G \curvearrowright R$$

if there is a coarsely G-equivariant Lipschitz map $R \rightarrow S$.

Example:

$F_2 \curvearrowright$

We define a partial order on set of isometric actions of G.

Definition

Given isometric actions of a group G on metric spaces R and S, we say

 $G \curvearrowright S \preceq G \curvearrowright R$

if there is a coarsely G-equivariant Lipschitz map $R \rightarrow S$.

Example:

 $F_2 \curvearrowright$

*

$$F_2 \cap$$

 \prec

We define a partial order on set of isometric actions of G.

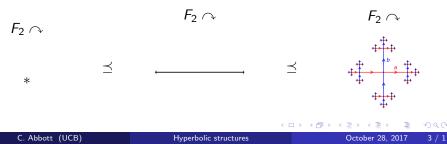
Definition

Given isometric actions of a group G on metric spaces R and S, we say

$$G \curvearrowright S \preceq G \curvearrowright R$$

if there is a coarsely G-equivariant Lipschitz map $R \rightarrow S$.

Example:



Poset of hyperbolic structures

Poset of hyperbolic structures

Definition

Define

$$\mathcal{H}(G) = \{G \curvearrowright S$$

Definition

Define

 $\mathcal{H}(G) = \{ G \curvearrowright S \mid \text{cobounded}, \text{ and } \}$

Definition

Define

 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\}$

Definition

Define

 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\} / \sim,$

where \sim be the equivalence induced from $\preceq.$

Define

 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\} / \sim,$

where \sim be the equivalence induced from \leq . $\mathcal{H}(G)$ is the *poset of hyperbolic structures on G*.

Define

 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\} / \sim,$

where \sim be the equivalence induced from \leq . $\mathcal{H}(G)$ is the *poset of hyperbolic structures on G*.

Goal: Understand G by studying the properties of $\mathcal{H}(G)$.

Define

 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\} / \sim,$

where \sim be the equivalence induced from \leq . $\mathcal{H}(G)$ is the *poset of hyperbolic structures on G*.

Goal: Understand G by studying the properties of $\mathcal{H}(G)$.

Questions

Define

 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\} / \sim,$

where \sim be the equivalence induced from \leq . $\mathcal{H}(G)$ is the *poset of hyperbolic structures on G*.

Goal: Understand G by studying the properties of $\mathcal{H}(G)$.

Questions

• How big is $\mathcal{H}(G)$ for various (classes of) groups G?

Define

 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\} / \sim,$

where \sim be the equivalence induced from \leq . $\mathcal{H}(G)$ is the *poset of hyperbolic structures on G*.

Goal: Understand G by studying the properties of $\mathcal{H}(G)$.

Questions

- How big is $\mathcal{H}(G)$ for various (classes of) groups G?
- Is $\mathcal{H}(G)$ a lattice?

Define

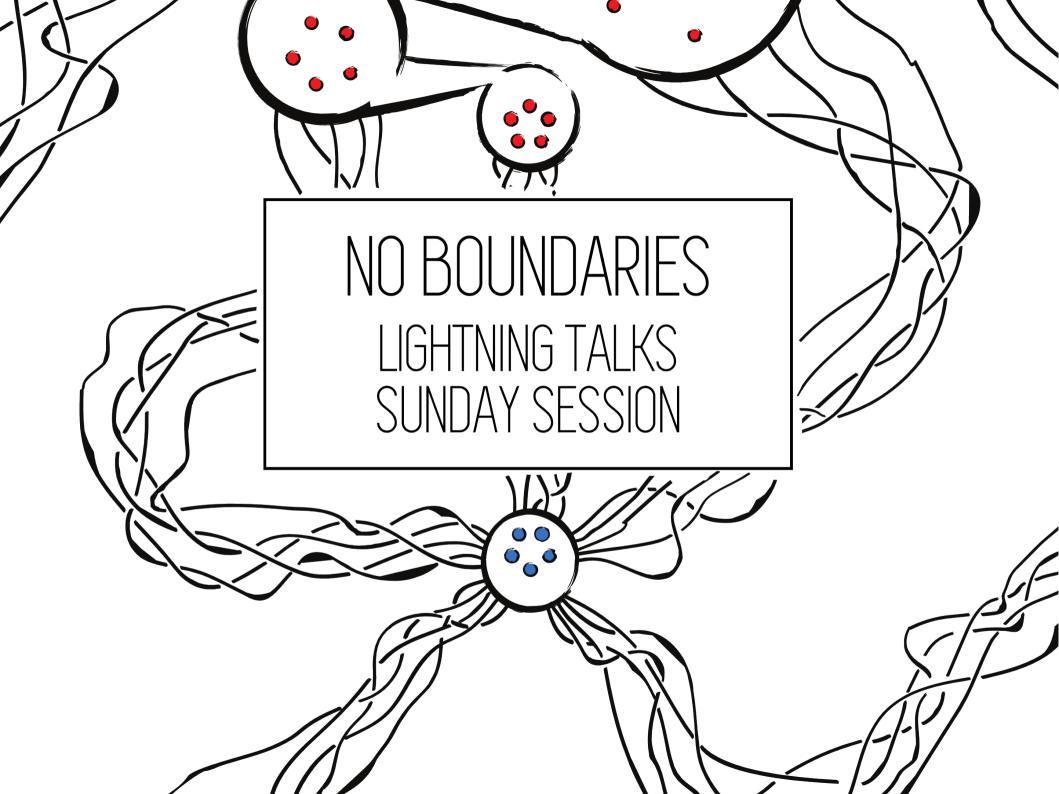
 $\mathcal{H}(G) = \{G \curvearrowright S \mid \text{cobounded, and } S \text{ is hyperbolic}\} / \sim,$

where \sim be the equivalence induced from \leq . $\mathcal{H}(G)$ is the *poset of hyperbolic structures on G*.

Goal: Understand G by studying the properties of $\mathcal{H}(G)$.

Questions

- How big is $\mathcal{H}(G)$ for various (classes of) groups G?
- Is $\mathcal{H}(G)$ a lattice?
- When does $\mathcal{H}(G)$ contain a largest element?



How many points can be chosen continuously on smooth cubic plane curves?

Weiyan Chen

University of Minnesota, Twin Cities.

No Boundaries: Groups in Algebra, Geometry, and Topology, A Celebration of the Mathematical Contributions of Benson Farb University of Chicago October 29, 2017.

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• A cubic plane curve is given by

$$C_F = \{ [x:y:z] \mid F(x,y,z) = 0 \} \subset \mathbb{CP}^2$$

where F(x, y, z) is a homogeneous polynomial of degree 3.

• A cubic plane curve is given by

$$C_F = \{ [x:y:z] \mid F(x,y,z) = 0 \} \subset \mathbb{CP}^2$$

where F(x, y, z) is a homogeneous polynomial of degree 3.

• Every smooth cubic plane curve has 9 points of inflection where Hessian = 0.

• A cubic plane curve is given by

$$C_F = \{ [x: y: z] \mid F(x, y, z) = 0 \} \subset \mathbb{CP}^2$$

where F(x, y, z) is a homogeneous polynomial of degree 3.

- Every smooth cubic plane curve has 9 points of inflection where Hessian = 0.
- Smooth cubic plane curves come naturally with 9 marked points.

• A cubic plane curve is given by

$$C_F = \{ [x: y: z] \mid F(x, y, z) = 0 \} \subset \mathbb{CP}^2$$

where F(x, y, z) is a homogeneous polynomial of degree 3.

- Every smooth cubic plane curve has 9 points of inflection where Hessian = 0.
- Smooth cubic plane curves come naturally with 9 marked points.

This leads one to wonder:

• A cubic plane curve is given by

$$C_F = \{ [x:y:z] \mid F(x,y,z) = 0 \} \subset \mathbb{CP}^2$$

where F(x, y, z) is a homogeneous polynomial of degree 3.

- Every smooth cubic plane curve has 9 points of inflection where Hessian = 0.
- Smooth cubic plane curves come naturally with 9 marked points.

This leads one to wonder:

- "Is it possible to continuously choose *n* points on any smooth cubic plane curve?"
- "Is *n* = 9 the only possible case?"
- "Is the algebraic construction the only example allowed by topology?"

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

Image: A (1)

3

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

• Consider the following fiber bundle over X:

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

• Consider the following fiber bundle over X:

$$\begin{array}{ccc} \mathrm{UConf}^n C_F & \longrightarrow & E_n \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & X \end{array}$$

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

• Consider the following fiber bundle over X:

$$\begin{array}{ccc} \mathrm{UConf}^n C_F & \longrightarrow & E_n \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

• Consider the following fiber bundle over X:

$$\begin{array}{ccc} \mathrm{UConf}^n C_F & \longrightarrow & E_n \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$$

where $\operatorname{UConf}^n C_F :=$ the configuration space of *n* distinct unlabeled points on C_F .

• The question reformulated:

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

• Consider the following fiber bundle over X:

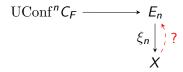
$$\begin{array}{ccc} \mathrm{UConf}^n C_F & \longrightarrow & E_n \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$$

where $\operatorname{UConf}^n C_F :=$ the configuration space of *n* distinct unlabeled points on C_F .

 The question reformulated: For what natural number n does the bundle ξ_n admit a continuous section?

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

• Consider the following fiber bundle over X:

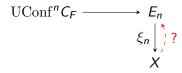


where $\operatorname{UConf}^n C_F :=$ the configuration space of *n* distinct unlabeled points on C_F .

 The question reformulated: For what natural number n does the bundle ξ_n admit a continuous section?

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

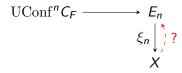
• Consider the following fiber bundle over X:



- The question reformulated: For what natural number n does the bundle ξ_n admit a continuous section?
- Conjectures (Farb):

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

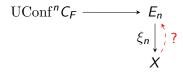
• Consider the following fiber bundle over X:



- The question reformulated: For what natural number n does the bundle ξ_n admit a continuous section?
- Conjectures (Farb):
 - I. ξ_n has no section if n < 9.

Define $X := \{F(x, y, z) | \text{ homogeneous, degree 3, and smooth}\} \subset \mathbb{C}^{10}$.

• Consider the following fiber bundle over X:



- The question reformulated: For what natural number n does the bundle ξ_n admit a continuous section?
- Conjectures (Farb):
 - I. ξ_n has no section if n < 9.
 - II. ξ_n has no section if n > 9.

Answers and further questions...

Answers and further questions...

Theorem (C-, 2017)

(1) Conjecture I is true:

(1) Conjecture I is true: ξ_n has no section unless 9|n.

(1) Conjecture I is true: ξ_n has no section unless 9|n.

(2) Conjecture II is false:

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions,

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions, e.g. when
 n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions, e.g. when n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...
- (1) $\implies \xi_1$ has no section.

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions, e.g. when
 n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...
- (1) $\implies \xi_1$ has no section.

Hence, it is not possible to continuously choose an elliptic curve structure for all smooth cubic plane curves.

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions, e.g. when
 n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...
- (1) $\implies \xi_1$ has no section.

Hence, it is not possible to continuously choose an elliptic curve structure for all smooth cubic plane curves.

Further questions:

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions, e.g. when
 n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...

(1) $\implies \xi_1$ has no section.

Hence, it is not possible to continuously choose an elliptic curve structure for all smooth cubic plane curves.

Further questions:

• What about other values of n (for example, n = 18)?

Theorem (C-, 2017)

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions, e.g. when
 n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...

(1) $\implies \xi_1$ has no section.

Hence, it is not possible to continuously choose an elliptic curve structure for all smooth cubic plane curves.

Further questions:

- What about other values of n (for example, n = 18)?
- Classify all sections of ξ_n. Are they homotopic to the obvious ones given by algebra?

Theorem (C-, 2017)

- (1) Conjecture I is true: ξ_n has no section unless 9|n.
- (2) Conjecture II is false: ξ_n has a section when n/9 is a sum of Jordan 2-totient functions, e.g. when n/9 = 1, 3, 4, 8, 9, 11, 12, 13, 15, 16, 20, 21, 23, 24, ...

(1) $\implies \xi_1$ has no section.

Hence, it is not possible to continuously choose an elliptic curve structure for all smooth cubic plane curves.

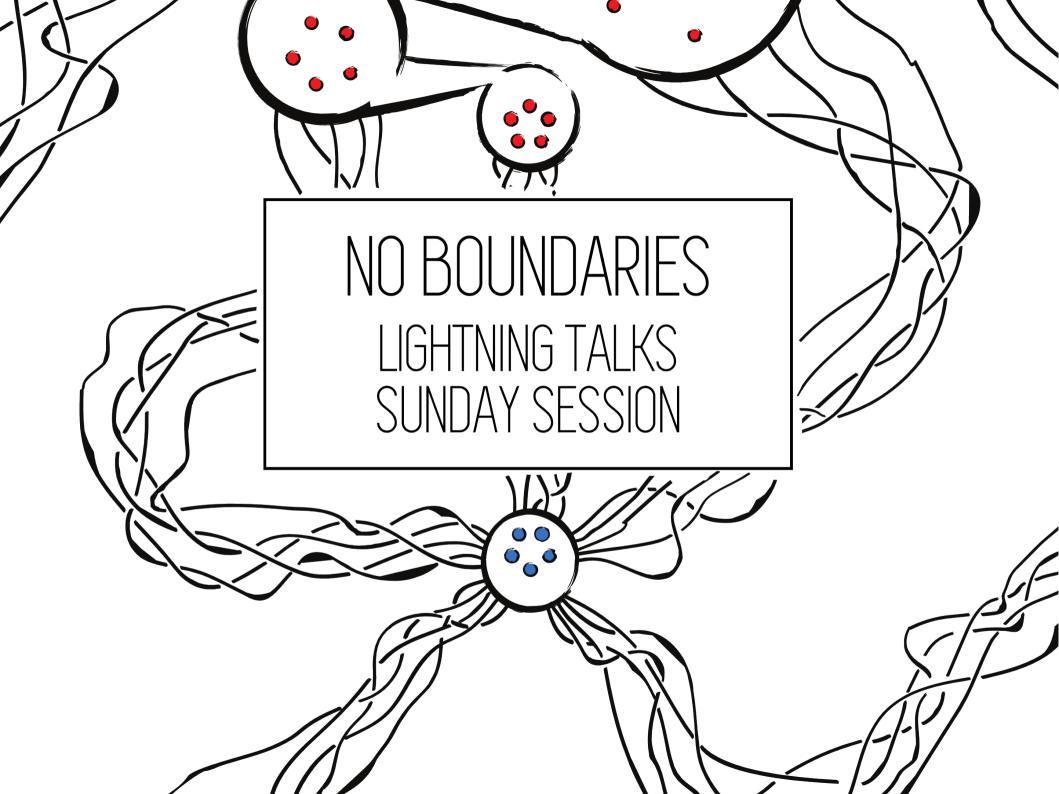
Further questions:

- What about other values of n (for example, n = 18)?
- Classify all sections of ξ_n. Are they homotopic to the obvious ones given by algebra?
- Similar question for other enumerative problems.

Thank you.

< 17 ▶

æ



Arithmetic Quotients: of $Out(F_n)$, $Mod(\Sigma)$

Justin Malestein (University of Oklahoma)

(includes work joint with Putman, and Grunewald-Larsen-Lubotzky)

A B F A B F

Classical representations (or arithmetic quotients)

$$\operatorname{Out}(F_n) \twoheadrightarrow \operatorname{GL}_n(\mathbb{Z})$$

$$\mathsf{Mod}(\Sigma_g) \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z})$$

Other representations?

J. Malestein

3

.

Classical representations (or arithmetic quotients)

$$\operatorname{Out}(F_n) \twoheadrightarrow \operatorname{GL}_n(\mathbb{Z})$$

$$\mathsf{Mod}(\Sigma_g) \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z})$$

Other representations?

One possibility is to act on H_1 of finite covers (or of finite index subgroups of F_n)

3

Some Results, I

From actions on H_1 of finite index subgroups of F_n , one can obtain

Theorem (Grunewald–Lubotzky)

Let $n \ge 4$ and $m \ge 1$. There are virtual surjective representations $\operatorname{Out}(F_n) \to \operatorname{PGL}_{m(n-1)}(\mathcal{O})$. where \mathcal{O} can be

- Z
- a ring of integers in a finite abelian extension of Q (depending on m)

Some Results, I

From actions on H_1 of finite index subgroups of F_n , one can obtain

Theorem (Grunewald–Lubotzky)

Let $n \ge 4$ and $m \ge 1$. There are virtual surjective representations $\operatorname{Out}(F_n) \to \operatorname{PGL}_{m(n-1)}(\mathcal{O})$. where \mathcal{O} can be

- Z
- a ring of integers in a finite abelian extension of Q (depending on m)
- an order in a finite-dimensional division algebra over Q (not all such division algebras and can depend on m)

Some Results, II

From actions on H_1 of finite covers of Σ_g , one can obtain

Theorem (Grunewald–Larsen–Lubotzky–M)

For any $g \ge 2, m \ge 1, n \ge 3$, \exists virtual surjections of $Mod(\Sigma_g)$ onto:

(a) $Sp(2m(g-1), \mathbb{Z})$

(b) $\operatorname{Sp}(4m(g-1), \mathcal{O})$ where \mathcal{O} is the ring of integers in $\mathbb{Q}(\zeta_n)^+$.

(c) $SU(m(g-1), m(g-1), \mathbb{Z}[\zeta_n]).$

(d) arithmetic groups of type SO(2m(g-1), 2m(g-1)).

 ζ_n is a primitive *n*th root of unity. This list is not exhaustive.

Some Results, II

From actions on H_1 of finite covers of Σ_g , one can obtain

Theorem (Grunewald–Larsen–Lubotzky–M)

For any $g \ge 2, m \ge 1, n \ge 3$, \exists virtual surjections of $Mod(\Sigma_g)$ onto:

(a) $Sp(2m(g-1), \mathbb{Z})$

(b) $\operatorname{Sp}(4m(g-1), \mathcal{O})$ where \mathcal{O} is the ring of integers in $\mathbb{Q}(\zeta_n)^+$.

(c)
$$SU(m(g-1), m(g-1), \mathbb{Z}[\zeta_n]).$$

(d) arithmetic groups of type SO(2m(g-1), 2m(g-1)).

 ζ_n is a primitive *n*th root of unity. This list is not exhaustive.

Looijenga earlier found virtual surjective representations $Mod(\Sigma_g) \rightarrow SU(g-1, g-1, \mathbb{Z}[\zeta_n]).$

A couple details about the previous results

The action on H_1 of a finite cover is really a product of such representations.

3

A couple details about the previous results

The action on H_1 of a finite cover is really a product of such representations.

To get surjectivity, both results only work for a certain (infinite) class of finite covers.

E.g. Grunewald–Lubotzky require the finite index subgroup to contain a free generator.

A couple details about the previous results

The action on H_1 of a finite cover is really a product of such representations.

To get surjectivity, both results only work for a certain (infinite) class of finite covers.

E.g. Grunewald–Lubotzky require the finite index subgroup to contain a free generator.

Determining the (virtual) image in $\mathsf{Aut}(\mathsf{H}_1)$ for a general finite cover is still open.

A (1) × A (2) × A (2) ×

A Couple Potential Applications

A result of Putman–Wieland says: if nonzero $Mod(\Sigma_g)$ -orbits in $H_1(cover)$ are always infinite for all finite covers, then $Mod(\Sigma_g)$ cannot virtually map onto \mathbb{Z} (otherwise it does)

A Couple Potential Applications

A result of Putman–Wieland says: if nonzero $Mod(\Sigma_g)$ -orbits in $H_1(cover)$ are always infinite for all finite covers, then $Mod(\Sigma_g)$ cannot virtually map onto \mathbb{Z} (otherwise it does)

The analogous statement for infinite orbits and $Aut(F_n)$ is proven. (Farb–Hensel)

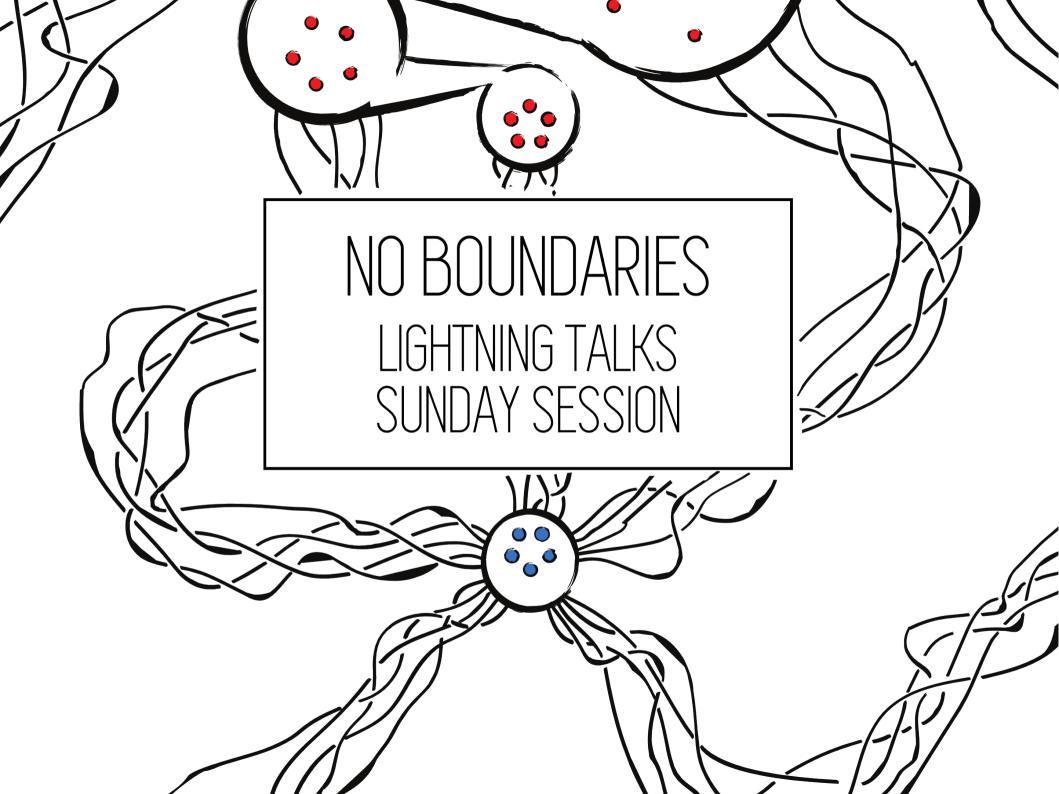
A Couple Potential Applications

A result of Putman–Wieland says: if nonzero $Mod(\Sigma_g)$ -orbits in $H_1(cover)$ are always infinite for all finite covers, then $Mod(\Sigma_g)$ cannot virtually map onto \mathbb{Z} (otherwise it does)

The analogous statement for infinite orbits and $Aut(F_n)$ is proven. (Farb–Hensel)

One can deduce facts about $Out(F_n)/\langle transvections^k \rangle$ using results of M–Putman.

A (10) A (10)



Stability in the Homology of Configuration Spaces

Jenny Wilson (Stanford) joint with Jeremy Miller (Purdue)

No Boundaries: Groups in Algebra, Geometry, and Topology 27–29 October 2017

Configuration spaces

Definition (configuration space)

M – connected non-compact finite-type manifold of dim \geq 2

 $F_k(M)$ – (ordered) configuration space of M on k points

$$F_k(M) := \{ (m_1, m_2, \dots, m_k) \in M^k \mid m_i \neq m_j \text{ for all } i \neq j \}$$

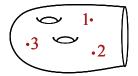


Figure: A point in $F_3(M)$

Goal: Understand
$$H_*(F_k(M))$$

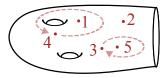


Figure: A class in $H_2(F_5(M))$

$$S_k \curvearrowright F_k(M)$$

Representation Stability

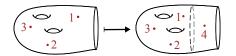


Figure: Stabilization Map $t : F_k(M) \to F_{k+1}(M)$

Strategy: Fix *M*. Package the sequence $\{H_*(F_k(M))\}_k$ into a module over a category encoding S_k -actions and embeddings.

Theorem (Church–Ellenberg–Farb, M–W (non-orientable case)) For each fixed i, $\{H_i(F_k(M))\}_k$ is representation stable.

 $\mathbb{Z}[S_{k+1}] \cdot t_*(H_i(F_k(M);\mathbb{Z})) = H_i(F_{k+1}(M);\mathbb{Z}) \quad \text{for } k \ge 2i.$

Higher-Order Representation Stability

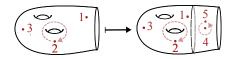
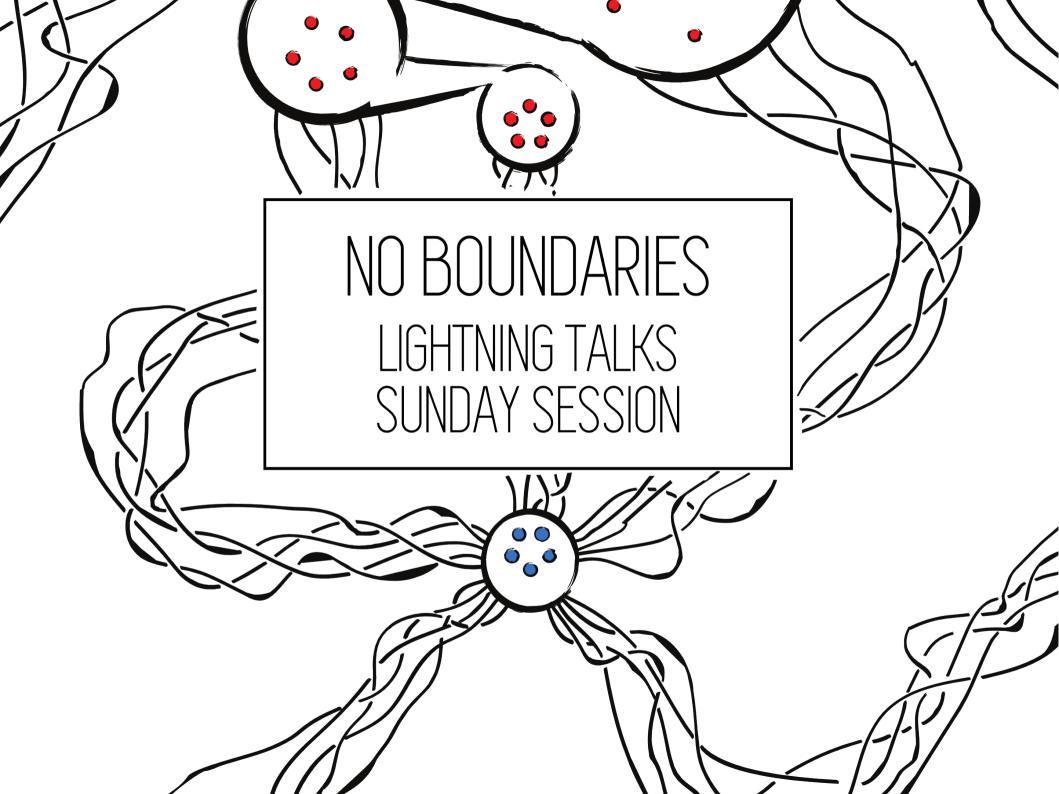


Figure: Secondary stabilization map $t' : H_i(F_k(M)) \to H_{i+1}(F_{k+2}(M))$

Theorem (M–W) $\{H_*(F_k(M); \mathbb{Q})\}_k$ has secondary representation stability. For each fixed *i*, the sequence of "unstable" homology in

$$\left\{H_{\frac{k+i}{2}}\left(F_{k}(M);\mathbb{Q}\right)\right\}_{k}$$

is finitely generated under the actions of maps t' and the groups S_k .



Arithmetic groups and characteristic classes of manifold bundles

> Bena Tshishiku Harvard University

 $\mathrm{H}^*(\mathrm{Mod}(S_g); \mathbf{Q})$

 $\mathrm{H}^*(\mathrm{BDiff}(S_g); \mathbf{Q}) \simeq \mathrm{H}^*(\mathrm{Mod}(S_g); \mathbf{Q})$

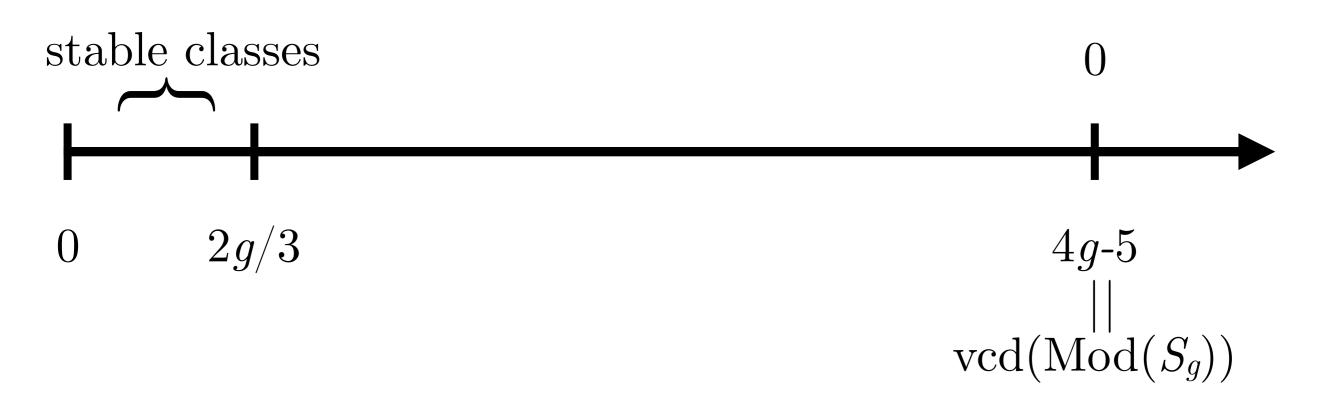
$\mathrm{H}^*(\mathrm{BDiff}(S_g); \mathbf{Q}) \simeq \mathrm{H}^*(\mathrm{Mod}(S_g); \mathbf{Q}) \simeq \mathrm{H}^*(\mathcal{M}(S_g); \mathbf{Q})$

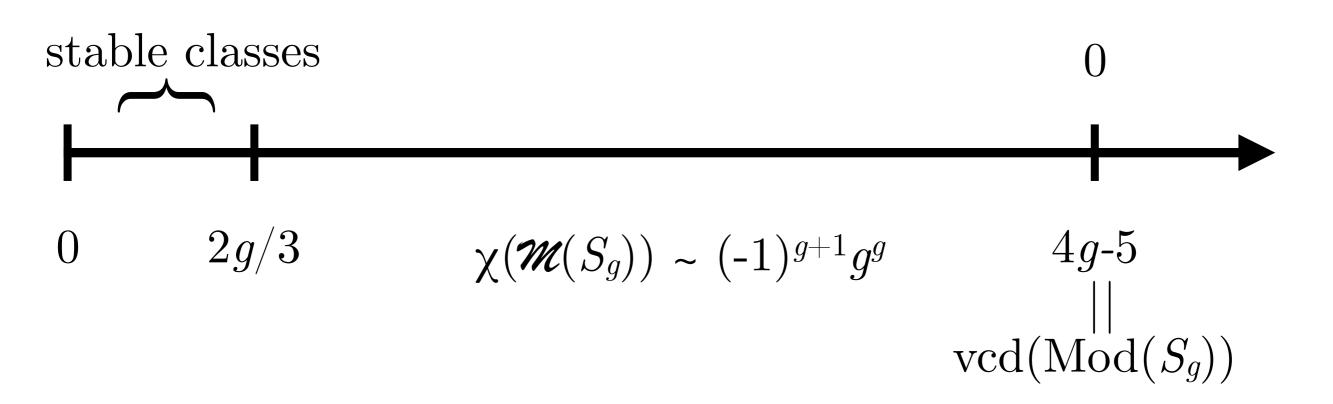
0

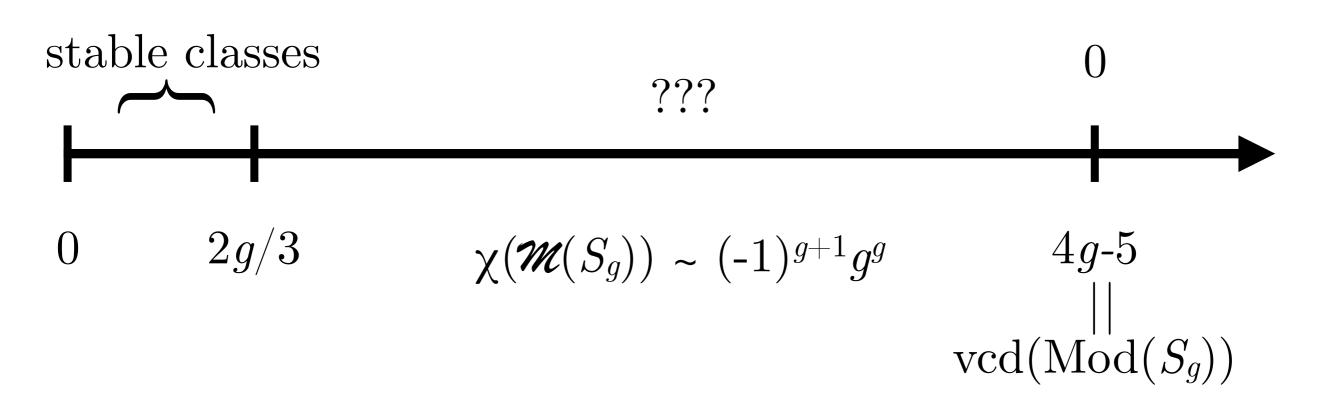
$\mathrm{H}^*(\mathrm{BDiff}(S_g); \mathbf{Q}) \simeq \mathrm{H}^*(\mathrm{Mod}(S_g); \mathbf{Q}) \simeq \mathrm{H}^*(\mathcal{M}(S_g); \mathbf{Q})$

0

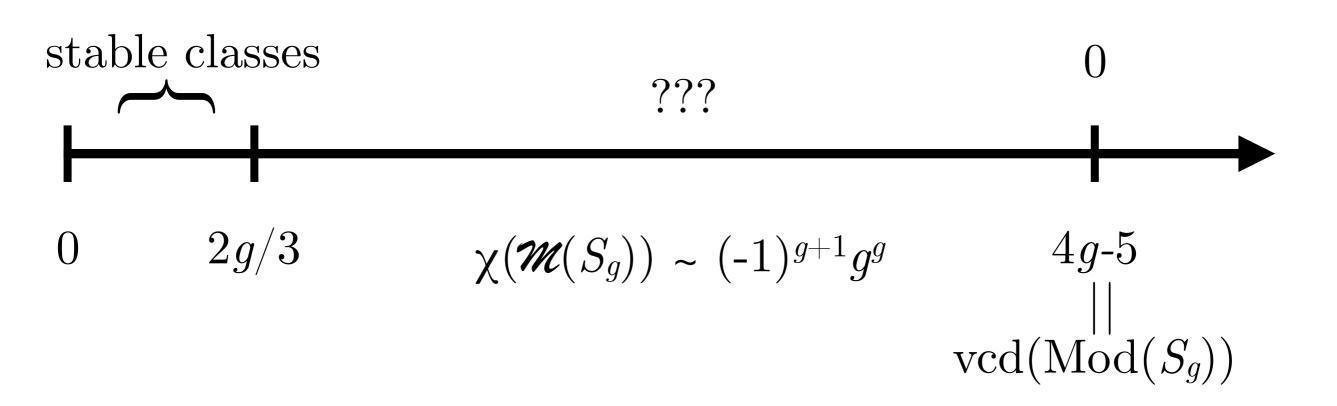
 $\begin{array}{c}4g\text{-}5\\||\\\mathrm{vcd}(\mathrm{Mod}(S_g))\end{array}$







Dark Matter Problem: Find new classes outside the stable range. (e.g. classes in odd degree??)



Theorem (Tshishiku). $M_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$

 $\begin{array}{l} g \text{ odd} \\ \swarrow \\ \end{array}$ **Theorem** (Tshishiku). $M_g^{4k} = (S^{2k} \times S^{2k}) \# \dots \# (S^{2k} \times S^{2k})$ For $k \gg q$, for every N>0,

 $\begin{array}{c} g \text{ odd} \\ \swarrow \\ \end{array}$ **Theorem** (Tshishiku). $\mathrm{M}_{g}^{4k} = (\mathrm{S}^{2k} \times \mathrm{S}^{2k}) \# \ ... \ \# (\mathrm{S}^{2k} \times \mathrm{S}^{2k})$

For $k \gg g$, for every N>0,

there's a finite-index subgroup $\text{Diff}^{\Gamma}(M) \leq \text{Diff}(M)$

 $\begin{array}{c} g \text{ odd} \\ \swarrow \\ \end{array}$ **Theorem** (Tshishiku). $\mathrm{M}_{g}^{4k} = (\mathrm{S}^{2k} \times \mathrm{S}^{2k}) \# \ ... \ \# (\mathrm{S}^{2k} \times \mathrm{S}^{2k})$

For $k \gg g$, for every N>0,

there's a finite-index subgroup $Diff^{\Gamma}(M) \leq Diff(M)$

so that dim $H^g(BDiff^{\Gamma}(M);Q) \geq N$.

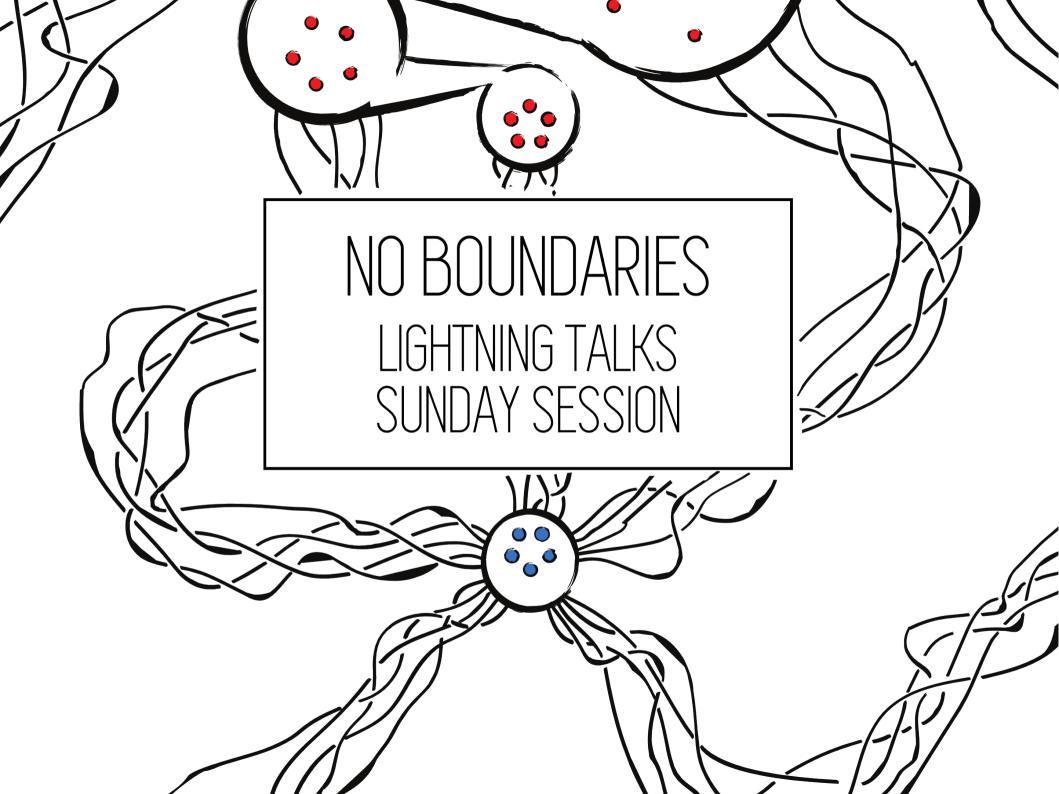
Theorem (Tshishiku). $M_g^{4k} = (S^{2k} \times S^{2k}) \# ... \# (S^{2k} \times S^{2k})$

For $k \gg g$, for every N>0,

there's a finite-index subgroup $\text{Diff}^{\Gamma}(M) \leq \text{Diff}(M)$

so that dim $H^g(BDiff^{\Gamma}(M);Q) \geq N$.

Happy birthday, Benson!



Groups ... in Other Places

Angela Kubena

Department of Mathematics University of Michigan

No Boundaries

29 Oct 2017

As we all know, examples are important...

As we all know, examples are important...

In this talk : An example from undergraduate education

- Small Classes (≤ 18 students)
- Emphasis on Group Work

- Small Classes (≤ 18 students)
- Emphasis on Group Work
 - In and out of class
 - Instructor training
- Conceptual Focus
 - Gateways for computational skills

- Small Classes (≤ 18 students)
- Emphasis on Group Work
 - In and out of class
 - Instructor training
- Conceptual Focus
 - Gateways for computational skills
- Challenging Problems
- Variety of Applications

Single Variable Calculus

Multivariable Calculus

- Small Classes (≤ 18 students)
- Emphasis on Group Work
 - In and out of class
 - Instructor training
- Conceptual Focus
 - Gateways for computational skills
- Challenging Problems
- Variety of Applications

Single Variable Calculus

- Small Classes (≤ 18 students)
- Emphasis on Group Work
 - In and out of class
 - Instructor training
- Conceptual Focus
 - Gateways for computational skills
- Challenging Problems
- Variety of Applications

Multivariable Calculus

- Large lecture
 - plus group work in lab
- $\sim 64\%$ of the students are from Engineering
- "Standard" focus
- Applications From Physics
- Covers Stokes and Divergence Theorems

This multivariable calculus course is NOT ideal for many students.

- Group of Students:
 - Mathematics
 - Economics
 - Statistics
 - Other Social Sciences
 - (and others who do not (or not yet) need surface integrals)

- Group of Students:
 - Mathematics
 - Economics
 - Statistics
 - Other Social Sciences
 - (and others who do not (or not yet) need surface integrals)
- Style:
 - IBLish (Inquiry Based Learning)
 - Small Classes (\leq 18 students)

- Group of Students:
 - Mathematics
 - Economics
 - Statistics
 - Other Social Sciences
 - (and others who do not (or not yet) need surface integrals)
- Style:
 - IBLish (Inquiry Based Learning)
 - Small Classes (≤ 18 students)
- Material:
 - Some Linear Algebra
 - Some Basic Proofs, including $\delta \epsilon$
 - Through Green's Theorem
 - Applications from Economics and Probability/Statistics

- Group of Students:
 - Mathematics
 - Economics
 - Statistics
 - Other Social Sciences
 - (and others who do not (or not yet) need surface integrals)
- Style:
 - IBLish (Inquiry Based Learning)
 - Small Classes (≤ 18 students)
- Material:
 - Some Linear Algebra
 - Some Basic Proofs, including $\delta \epsilon$
 - Through Green's Theorem
 - Applications from Economics and Probability/Statistics

Course begins January 2018

Happy Birthday, Benson!

Happy Birthday, Benson!

Just one more thing:

Happy Birthday, Benson!

Just one more thing:

Thank you for everything!

Groups ... in Other Places