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Given X , how hard is it to find Y ?

general sextic cubic surface Jacobian

a root a line a level structure

Goal: Explain how these three questions can be precisely related.
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Set-up

k - ground field (for this talk, assume char(k) = 0)

M - variety over k
M′ //M - finite dominant map (i.e. restricts to a cover of a
Zariski open)
Example:

Pn - space of monic degree n polynomials

P̃n := {(P, z) ∈ Pn × k̄ | P(z) = 0}
- space of polynomials with a choice of root

Forgetting the root gives a branched cover

P̃n // Pn
(P, z) 7→ P
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- P̃n // Pn
(polynomials with or w/o a root)

- M3,3(1) //M3,3

(cubic surfaces with or w/o a line)

- Ag [L] //Ag

(PPAVs with or w/o a level structure)

Want: A common invariant that captures the complexity of
specifying a point in the cover given a point in the base.
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Warm-up: Essential Dimension

Definition
The essential dimension edk(M′ //M) is the minimum d for
which there exists a Zariski open U ⊂M and a pullback square

M′|U //

��

Ỹ

��

U // Y

with dimk(Y ) = d.



Resolvent Degree

Definition
The resolvent degree RDk(M′ //M) is the minimum d such that
there exists a tower of finite dominant maps

Er
// · · · // E1

// E0 =M

with
Er

//

  

M′

}}

M

and with edk(Ei
// Ei−1) ≤ d for all i .



Remarks

Resolvent degree quantifies “how hard” it is to specify a point in a
cover, given a point in the base.

Cyclic covers are much simpler than general covers, for
example:

- Newton’s method (i.e. z 7→ z − P(z)
P′(z) ) gives a reliable iterative

algorithm for extracting radicals.

Theorem (McMullen, 1988)

There is no generally convergent iterative algorithm for finding the
roots of a general polynomial of degree ≥ 4.

RD = 1 reflects this.
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Consider P̃n // Pn (moduli of polynomials with and w/o a root)

Theorem (Babylonians)

RDk(P̃2 // P2) = 1.

Theorem (Tartaglia, Cardano, Ferrari)

For n ≤ 4, RDk(P̃n // Pn) = 1.

Theorem (Bring, 1786)

RDk(P̃5 // P5) = 1.
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Conjecture (Hilbert)

RDk(P̃n // Pn) ≥ 2 for n ≥ 6.

Theorem (Doyle–McMullen, 1989)

There exists a tower of iterative algorithms for extracting the roots
of a general polynomial of degree at most 5. For n > 5, no such
tower exists.

∴ If you believe Hilbert’s conjecture, Doyle–McMullen is another
example of how RD > 1 captures intuitive notions of complexity of
a problem.
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Remarks, cont.

Essential dimension - introduced in 1998 by Buhler and Reichstein.

From the definition, edk ≥ RDk .
In general, the difference can be arbitrarily large:

M := {p(z) ∈ P2n | p(z) = (z2 − a1) · · · (z2 − an)}

M′ := P̃2n|M.

Then for n > 1

edk(M′ //M) = n >> RDk(M′ //M) = 1

∴ edk very sensitive to arithmetic of the fields k and k(M).
RDk captures traditional notions of complexity of a problem.
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Three major sources of M′ //M:

- Roots of polynomials, e.g. P̃n // Pn
- Classical enumerative problems, e.g.

- M3,3(1) //M3,3 (cubic surfaces with or w/o a line)
- M4,2(1) //M4,2 (quartic curves with or w/o a bitangent)

...

- Congruence subgroups, i.e.

X (Γ) = Γ \ G/K arithmetic, locally symmetric space.
Γ′ ⊂ Γ finite index subgroup

- X (Γ′) // X (Γ).

Resolvent degree gives a common, natural invariant of each.
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Many (most) examples come with towers of covers, e.g.

- M3,3(27) //M3,3(1) //M3,3

- · · · //Mg [`n] //Mg [`n−1] // · · · //Mg

Much of algebraic geometry pre-1930 concerned with:

Given one datum, specify others.

I.e. specify the relationships between intermediate covers.
Resolvent degree gives a natural framework for understanding and
organizing classical work.
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1975.
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- Hamilton, 1836
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For RDk , there exist techniques for obtaining upper bounds.

However:

There are no known nontrivial lower bounds on RDk .

Conjecture (Hilbert)

1. RDC(P̃6 // P6) = 2.

2. (Hilbert’s 13th Problem) RDC(P̃7 // P7) = 3.

Question
Is RDC(−) ≡ 1?

Hilbert thought no. Benson and I are working on this!
Keywords: “braid Galois group.” Hopefully, more soon!
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RD and Classical Enumerative Problems

Theorem (Cayley–Salmon, 1856)

There exist 27 lines on every smooth cubic surface.

Question
Given a cubic, how hard is it to find one line? All 27?

Let M3,3(n) denote the moduli of cubic surfaces with a choice of
n (ordered) lines.

Theorem (Jordan, 1870; Harris, 1979)

RDk(M3,3(27) //Mdisj .
3,3 (3)) = 1.

Observation (Farb–W.)

RDk(M3,3(27) //M3,3(1)) = RDk(P̃5 // P5) = 1.
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Lines on cubics, cont.

Observation (Farb–W.)

RDk(M3,3(27) //M3,3(1)) = RDk(P̃5 // P5) = 1.

This follows from a beautiful classical trick:

Given L ⊂ S , each plane V in the pencil containing L has

V ∩ S = L ∪ C

for some conic C . Moreover, C degenerates to a pair of lines
L1 ∪ L2 at the roots of the discriminant of the pencil of conics, and
this discriminant has degree 5. Solving this quintic, we get 5
pairs of disjoint lines on S . By a theorem of Harris, we get the
remaining 17 lines by adjoining radicals.

Question
What is RDk(M3,3(1) //M3,3)?
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RD and Roots of Polynomials

“The theory has been a ‘plant of slow growth’. The Lund
Thesis [Bring] of December, 1786 (a matter of a couple of
pages), Hamilton’s report of 1836, with the tract of Mr.
Jerrard referred to therein, and the memoire [Sylvester] of
‘Crelle’ of December, 1886, constitute, as far as we are
aware, the complete bibliography of the subject up to the
present date.” (Sylvester, Hammond 1887)

To bring this up to 2017, add:

- Hilbert 1927

- Segre 1947, 1955,

- Brauer 1975.

(0 citations!)

That’s it!
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What’s Known

Theorem (Hamilton, 1836)

There exists a monotone increasing function H : N // N such that
for n > H(r), RDk(P̃n // Pn) ≤ n − r .

Hamilton computed the initial values of H:

r 4 5 6 7 8 9

H(r) 5 11 47 923 409,619 83,763,206,255

Sylvester–Hammond, 1887 - generating function for H(r)
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What’s Known, cont.

Theorem (Hamilton, 1836)

There exists a monotone increasing function H : N // N such that
for n > H(r), RDk(P̃n // Pn) ≤ n − r .

By mid-20th century, Hamilton’s Theorem appears to have been
forgotten:

Conjecture (Segre, Annals 1947)

There exists a monotone increasing function H : N // N such that
for n > H(r), RDk(P̃n // Pn) ≤ n − r .

Segre and Brauer reproved the theorem soon after, but without an
explicit formula.

Theorem (Brauer, 1975)

Let B(r) := (r − 1)! For n > B(r), RDk(P̃n // Pn) ≤ n − r .
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Improving on Hamilton, Brauer

- Let M3,N denote the moduli of cubic hypersurfaces in PN .

- Let Mr
3,N denote the moduli of cubic hypersurfaces in PN

with a choice of r -plane lying on them.

- Let L3(r ,N) := RDk(Mr
3,N

//M3,N).

Theorem (Farb–W.)

There exist polynomial functions f , g : N× N // N such that for
all n ≥ (d+k)!

d! ,

RDk(P̃n // Pn) ≤ max{n − (d + k + 1), L3(f (d , k), g(d , k))}.

Corollary

There exist monotone increasing functions FW , ϕ : N // N s.t.

- For n > FW (r), RDk(P̃n // Pn) ≤ n − r ,

- For all d ≥ 0, r ≥ ϕ(d), then B(r)/FW (r) ≥ d!.
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Improving on Hamilton, Brauer, cont.

Idea comes from:

Theorem (Hilbert, 1927)

RDk(P̃9 // P9) ≤ max{4,RDk(M3,3(1) //M3,3)}.
i.e. Hilbert used a line on a cubic surface to simplify the solution
of the general degree 9 polynomial!
His proof suggests two things:

1. A method for finding special points on Fano varieties of
complete intersections.

2. A method for using linear subspaces on complete intersections
to improve bounds on resolvent degree.
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1. A method for finding special points on Fano varieties of
complete intersections.

2. A method for using linear subspaces on complete intersections
to improve bounds on resolvent degree.



Improving on Hamilton, Brauer, cont.

Idea comes from:

Theorem (Hilbert, 1927)

RDk(P̃9 // P9) ≤ max{4,RDk(M3,3(1) //M3,3)}.
i.e. Hilbert used a line on a cubic surface to simplify the solution
of the general degree 9 polynomial!
His proof suggests two things:

1. A method for finding special points on Fano varieties of
complete intersections.

2. A method for using linear subspaces on complete intersections
to improve bounds on resolvent degree.



Improving on Hamilton, Brauer, cont.

Idea for 2 actually goes back to the beginnings of the subject:

Theorem (Bring, 1786)

RDk(P̃n // Pn) ≤ max{n − 4,RDk(M1
2,2

//M2,2)} (= n − 4),
for n ≥ 5.

Question
By combining Hamilton’s method with that of Bring–Hilbert, can
we go further?
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RD and Congruence Subgroups

Theme in Kähler geometry: study/obstruct compressions to a
smaller dimensional variety.

- Gromov–Schoen

- Beauville–Siu
...

Resolvent degree suggests a natural refinement:

Question
Given a cover X̃ // X, can we (virtually) compress the cover to a
cover of a lower dimensional variety?

More precisely:

Question
Given arithmetic locally symmetric space X = Γ \G/K, and Γ′ ⊂ Γ
finite index, what is RDk(X (Γ′) // X (Γ))?
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Example

Let E = Z[ω] denote the Eisenstein integers.

Let Γ4 = PU(4, 1)(E).
Γ4 �W (E6). Denote kernel by Γ′4.
Γ4 	 CH4. Get a congruence cover

X (Γ′4) // X (Γ4)

By work of Clemens–Griffiths and Allcock–Carlson–Toledo:

- X (Γ4) is a moduli space of certain intermediate Jacobians,

- X (Γ′4) is the moduli space of these intermediate Jacobians
equipped with a W (E6)-level structure.
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Sample Theorem

Theorem (Farb–W.)

Hilbert’s Sextic Conjecture ⇒ RDC(X (Γ′4) // X (Γ4)) ≥ 2.

Proof.
Two steps:

1. A variant of Hilbert’s trick for the degree 9 shows that

RDk(P̃6 // P6) ≤ RDk(M3,3(1) //M3,3).

2. Allcock–Carlson–Toledo’s uniformization theorem implies that

RDC(M3,3(1) //M3,3) = RDC(X (Γ′4) // X (Γ4)).

.
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Sample Theorem, Cont.

Two things I like about this theorem:

- It relates three seemingly very different problems.

- It uses a uniformization theorem to obtain nontrivial relations
between algebraic problems.

No Boundaries!
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Conclusion

“The study of [resolvent degree], far from being exhausted,
has, in leaving our hands, little more than reached its first
stage, and it is believed will furnish a plentiful aftermath
to those who may feel hereafter inclined to pursue to the
end the thorny path we have here contented ourselves with
indicating, which lies so remote from the beaten track of
research, and offers an example and suggestion of infinite
series (as far as we are aware) wholly unlike any which have
previously engaged the attention of mathematicians.”

(Sylvester, Hammond 1887)

Sylvester and Hammond’s words apply just as much today!
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Happy Birthday, Benson!
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