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Abstract. We investigate the cohomology of the level 4 subgroup of the braid group,
namely, the kernel of the mod 4 reduction of the Burau representation at t = −1. This
group is also equal to the kernel of the mod 2 abelianization of the pure braid group. We
give an exact formula for the first Betti number; it is a quartic polynomial in the number of
strands. We also show that, like the pure braid group, the first homology satisfies uniform
representation stability in the sense of Church and Farb. Unlike the pure braid group, the
group of symmetries—the quotient of the braid group by the level 4 subgroup—is one for
which the representation theory has not been well studied; we develop its representation
theory. This group is a non-split extension of the symmetric group.

As applications of our main results, we show that the rational cohomology ring of the
level 4 braid group is not generated in degree 1 when the number of strands is at least 15,
and we compute all Betti numbers of the level 4 braid group when the number of strands
is at most 4. We also derive a new lower bound on the first rational Betti number of the
hyperelliptic Torelli group and on the top rational Betti number of the level 4 mapping class
group in genus 2. Finally, we apply our results to locate all of the 2-torsion points on the
characteristic varieties of the pure braid group.

1. Introduction

For an integer m ≥ 0, the level m braid group Bn[m] is a subgroup of the braid group
Bn. It is defined as the kernel of the composition

Bn → GLn(Z[t, t−1])→ GLn(Z)→ GLn(Z/m)

where the first map is the (unreduced) Burau representation (see Birman’s book [4]), the
next map is evaluation at t = −1 and the last map is given by reducing entries mod m.

The group Bn[0] is the kernel of the Burau representation at t = −1. This group is
called the braid Torelli group, and we denote it by BIn. The braid Torelli group arises in
algebraic geometry: it is the product of Z with fundamental group of any component of
the branch locus of the period map on Torelli space [20]. Brendle, Putman, and the second
author found a set of generators for BIn [6].

Arnol’d [2] showed that Bn[2] is equal to the pure braid group PBn. Brendle and the
second author showed that Bn[4] is equal to PB2

n, the subgroup of PBn generated by all
squares of elements [8]. Equivalently, Bn[4] is the kernel of the mod 2 abelianization map

PBn → H1(PBn;Z/2) ∼= (Z/2)(
n
2).

They additionally showed that Bn[4] is equal to the subgroup of PBn generated by all squares
of Dehn twists [8]. Little else is known about the algebraic structure of Bn[m] when m > 2.
Indeed, there are no explicit finite generating sets known for these groups (in principle one can
obtain a finite generating set from the Reidemeister–Schreier process, but such a generating
set would not be geometrically meaningful).

The group Bn[4] is also of interest in algebraic geometry. It is isomorphic to the
fundamental group of the mod 2 congruence cover of the complement of the braid arrangement
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Xn; see [8]. Arithmetic aspects of this cover were studied by Yu [24] in connection with
Cohen–Lenstra heuristic for functions fields; see also [15]. The group Bn[4] and the moduli
space Xn also play an important role in forthcoming work of Rudenko on scissor congruence
problems [30].

Our main result is Theorem 2.5, which states that H1(Bn[4];C) satisfies uniform rep-
resentation stability in the sense of Church and Farb. The group of symmetries is Zn =
Bn /Bn[4], which is a non-split extension of the symmetric group Sn by H1(PBn;Z/2). The-
orem 2.5 gives the explicit decomposition of H1(Bn[4];C) into irreducible Zn-modules:

H1(Bn[4];C) ∼=


V2(1, (0)) n = 2

V3(1, (0))⊕ V3(1, (1))⊕ V3(ρ3, (0)) n = 3

Vn(1, (0))⊕ Vn(1, (1))⊕ Vn(1, (2))⊕ Vn(ρ3, (0))⊕ Vn(ρ4, (0)) n ≥ 4.

Each summand here is of the form

Vn(ρ, λ) = IndZn

ZI
n

(Vm(ρ)� Vn−m(λ))

where ZIn is the stabilizer in Zn of a set I of pairs of elements of {1, . . . , n}, Vm(ρ) is an
irreducible representation of ZIm, and Vn−m(λ) is an irreducible representation of Sn−m. See
Theorem 2.4 and the preceding discussion for the precise definitions.

Our first step towards proving Theorem 2.5 is to prove Theorem 2.1, which gives an
explicit basis for H1(Bn[4];Q). From this basis we obtain a formula for the first Betti number
of Bn[4], which is a quartic polynomial in n:

dimH1(Bn[4];Q) = 3

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
.

In order to prove this equality, there are two steps. We first construct new abelian quotients
of Bn[4]; these are defined in terms of double covers of the disk with n punctures (Section 3.1).
Then we construct a basis by first giving an infinite spanning set (Section 5) and whittling it
down to a basis, using the squared lantern relation, a Jacobi identity, the Witt–Hall identity,
and the Artin relations for PBn (Sections 6–7); this is the technical heart of the computation
of dimH1(Bn[4];Q). It is perhaps surprising that the end result here is a polynomial in n;
for instance, for the free group Fn the dimension of H1(F

2
n ;Q) is exponential in n.

Church and Farb introduced the theory of representation stability and proved that
Hk(PBn;Q) satisfies uniform representation stability [13]. By passing to PBn-invariants, our
Theorem 2.5 recovers their result for k = 1. Church and Farb take advantage of the explicit
basis for Hk(PBn;Q) provided by Arnol’d; our Theorem 2.1 plays the role of the Arnol’d
result. They also employ the representation theory of Sn. As part of our work we develop
the representation theory of Zn from the ground up (Section 8). Our results suggest that it
is an interesting problem to study the stability of Hk(Bn[m]) as k, n, and m vary.

One other thing that makes the proof of Theorem 2.5 difficult is that our generators
for the irreducible components of H1(Bn[4];Q) do not seem to have simple expressions. The
components Vn(ρ3, (0)) and Vn(ρ4, (0)) are the spans of the orbits of the elements

x3 = (1− T13)
∏

4≤j≤n
(1 + T1j)(1 + T2j)τ12 and x4 = (1− T14)(1− T23)τ12,

respectively, where each Tij is an Artin generator for PBn and each τij is the image of
T 2
ij in H1(Bn[4];Q). In order to show that the actions of Zn on these spans agree with

the definitions of Vn(ρ3, (0)) and Vn(ρ4, (0)) requires deep understanding of the algebraic
structure of H1(Bn[4];Q).
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We derive a number of consequences of our methods and results, about the level 4
hyperelliptic mapping class group SModg[4], the braid Torelli group BIn, the level 4 mapping
class group Modg[4], the characteristic varieties Vd(Xn) of the braid arrangement Xn, and
Bn[4] itself. Specifically, we give the following applications.

(1) H∗(Bn[4];Q) is not generated in degree 1 (Theorem 2.8).
(2) Bn[4] is not generated by 4th powers of half-twists (Theorem 2.3).
(3) All 2-torsion on V1(Xn) lies on central components, and outside V2(Xn) (Theorem 2.14).

We further give:

(4) a new lower bound for the first Betti number of BIn (Theorem 2.11),
(5) a new lower bound for the top Betti number of Mod2[4] (Proposition 2.7), and
(6) computations of all Betti numbers of Bn[4] for n ≤ 4 (Theorem 2.2).

Finally, we obtain analogues of some of our results about Bn[4] for SModg[4]:

(7) we determine the first Betti number of SModg[4] (Corollary 2.6), and
(8) we show H∗(SModg[4];Q) is not generated in degree 1 (Theorem 2.9).

Representation stability has been studied for representations of Weyl groups (such as
the symmetric groups and the hyperoctahedral groups), certain linear groups, and certain
wreath products, among others; see the surveys by Farb, Khomenko–Kesari, and Wilson
[16, 25, 34]. The group Zn seems to have not appeared before in the theory. The general
trend has to obtain representation stability from the finite generation of a module over a
category associated to a sequence of groups. The category for the groups {Zn} is the subject
of a forthcoming paper with Miller and Patzt. With the current technology it does not appear
to be possible to obtain our uniform representation stability from this categorical viewpoint.

Representation stability has also been studied extensively for various types of configu-
ration spaces, beginning with the work of Church, Church–Farb, and Church–Ellenberg–Farb
[11, 12, 13]. However, there is no general theory for the representation stability of the ho-
mology of covers of configuration spaces. On the other hand, the representation stability for
the homology of specific covers, such as orbit configuration spaces, have been studied, for
example, by Bibby–Gadish and Casto [3, 10]. Congruence covers of complements of hyper-
plane arrangements are well studied; see, for example, the survey by Suciu [32]. However,
we are not aware of any previously known general closed formulas for the Betti numbers of
congruence covers of Xn.

The uniform representation stability of the {H1(Bn[4];C)} can also be interpreted as a
result about the twisted homology of Bn with coefficients in the Vn(ρ, λ). Wahl and Randal-
Williams have proven a general stability result for the homology of braid groups with twisted
coefficients [29]. Their theorem applies to certain coefficient systems, called polynomial co-
efficient systems. It seems to be an interesting (and difficult) problem to determine if the
Vn(ρ, λ) are polynomial in this sense. Even if this were the case, their result would not imply
our Theorem 2.5; it would only imply that the multiplicities stabilize.

2. Statements of results

In this section, we explain our results in detail and give an outline for the paper.
We begin with a discussion of Theorem 2.1. This theorem can in theory be obtained from
our main result, Theorem 2.5 (and the dimension count in Theorem 2.1 does indeed follow
immediately). However, our entire approach to Theorem 2.5 is predicated on Theorem 2.1.
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An explicit basis. In this paper we identify Bn with the mapping class group of the 2-
dimensional disk Dn with n marked points in the interior [17, Chapter 9]. In general, for a
surface S, possibly with boundary and possibly with marked points, we define the mapping
class group Mod(S) as the group of homotopy classes of orientation-preserving homeomor-
phisms of S that preserve the set of marked points and fix the boundary pointwise.

We label the marked points by [n] = {1, . . . , n} and denote by Tij the (left) Dehn twist
about the curve in Dn indicated in Figure 1 and by τij the image of T 2

ij in H1(Bn[4];Q). The

group PBn acts on H1(Bn[4];Q) by conjugation; for f ∈ PBn we denote by fτij the image of
τij under the action of f .

For n ≥ 4 we define the set S to be S1 ∪ S2 ∪ S3 where

S1 = {τij | i < j},
S2 = {Tikτij , Tjkτik, Tijτjk | i < j < k}, and

S3 = {TilTjkτij , TijTk`τik, TikTj`τi` | i < j < k < `}.

For n < 4 we define S in the same way, except that we declare S1, S2, and S3 to be empty
when n is less than 2, 3, and 4, respectively. In this paper we compose elements of Bn from
right to left (functional notation).

Theorem 2.1. For all n ≥ 1 the set S is a basis for H1(Bn[4];Q). In particular,

dimH1(Bn[4];Q) = 3

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
.

We do not know if the abelianization of Bn[4] is torsion free, which is to say that we do
not know a complete description of H1(Bn[4];Z). On the other hand, the proof of Theorem 2.1
also works with Z/pZ coefficients for any odd prime p, implying that any non-trivial torsion
in the abelianization would have to be 2-primary.

As applications of Theorem 2.1 we prove the following two theorems in Section 11.3
and 10, respectively. The first gives all Betti numbers for B3[4] and B4[4].

Theorem 2.2. For n = 3 and n = 4, the dimensions of Hk(Bn[4];Q) are as follows:

dimHk(B3[4];Q) =


1 k = 0
6 k = 1
5 k = 2
0 k ≥ 3

dimHk(B4[4];Q) =


1 k = 0
21 k = 1
103 k = 2
83 k = 3
0 k ≥ 4

The second application shows that, even thoughH1(Bn[4];Q) is generated by the images
of 4th powers of half-twists, the group Bn[4] is not. This is in contrast with Bn and PBn,
each of which is generated by its simplest elements, half-twists and squares of half-twists.

Theorem 2.3. Let n ≥ 3 and suppose that G is a subgroup of Bn[4] that contains BIn. Then
G does not have a generating set consisting entirely of even powers of Dehn twists about curves
surrounding 2 points. In particular Bn[4] is not generated by 4th powers of half-twists.

We have the following related question.

Question 1. Does Bn[4] have a generating set whose cardinality is equal to the dimension of
H1(Bn[4];Q) (or even a generating set whose cardinality is a quartic polynomial in n)?
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Figure 1. Left: Tij is the Dehn twist about the indicated curve; Right: A
hyperelliptic involution

Irreducible representations of Zn. In order to state our main theorem, Theorem 2.5,
we must first describe the irreducible representations of the group Zn = Bn /Bn[4]. The
end result of our discussion here is Theorem 2.4 below, which gives a naming system for the
irreducible representations.

In order to state our classification of irreducible Zn-representations we require several
definitions. Let [n] denote {1, . . . , n} and let [n]2 denote the set of unordered pairs of elements
of [n]. The standard action of Bn on [n] (via the symmetric group Sn) induces an action on
[n]2. We say that a subset I of [n]2 is full if the union of the elements of I is [n]. The symmetric
group Sn acts on the set of full subsets of [n]2; let In be a set of orbit representatives.

Let I ∈ Im. For n ≥ m we may regard I as a subset of [n]2. We denote by BI
n the

stabilizer in Bn of the set I and by ZIn the image in Zn. We prove in Section 8.1 that there
is a natural surjective map

ZIn → ZIm×Sn−m.

Next, let PZn denote the image of PBn in Zn. This group is isomorphic to (Z/2)(
n
2), and

the irreducible representations of PZn are in bijection with subsets of [n]2; see Section 8.2.
We denote the representation corresponding to I ⊆ [n]2 by VI . We say that a representation
of PZn is I-isotypic if it decomposes as a direct sum of copies of VI .

We are ready to describe the irreducible representations of Zn that appear in our
classification. The input for one of these representations consists of two pieces of data, an I-
isotypic irreducible representation ρ of some ZIm with I ∈ Im and an irreducible representation
of Sn−m; as usual we label the latter by its corresponding padded partition of [n−m], call it
λ. With these in hand, we define a Zn-representation Vn(ρ, λ) by the formula

Vn(ρ, λ) = IndZn

ZI
n

(Vm(ρ)� Vn−m(λ))

where Vm(ρ) and Vn−m(λ) are the representations corresponding to ρ and λ and ZIn acts
via the surjection to ZIn → ZIm×Sn−m. Of course if ρ is isomorphic to ρ′ then Vm(ρ, λ) is
isomorphic to Vm(ρ′, λ). In order to obtain a unique name for each representation, we fix one
representative from each equivalence class once and for all.

We observe that if we take I = ∅, then Vn(ρ, λ) is the representation of Zn that factors
through the Sn-representation Vn(λ). We denote such a representation as Vn(1, λ).

Theorem 2.4. The Vn(ρ, λ) are irreducible Zn-representations. Further, every irreducible
Zn-representation is isomorphic to exactly one Vn(ρ, λ).

The usual map Bn → Sn induces a short exact sequence

1→ PZn → Zn → Sn → 1.
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If this sequence were split, we could hope to understand the representation theory of Zn via
the representation theory of Sn. We prove, however, in Proposition 8.6 that it is not split.

Statement of the main theorem: representation stability. The conjugation action of
Bn on Bn[4] induces an action of Bn on H1(Bn[4];C). Since this restricts to a trivial action
of Bn[4], we have that H1(Bn[4];C) is in a natural way a representation of Zn.

Church and Farb defined representation stability for sequences of representations of
Sn = Bn /PBn. We extend their definition to our setting and show that the H1(Bn[4];C)
are uniformly representation stable.

For each n there is a standard inclusion Bn → Bn+1 obtained by adding a strand. We
show in Lemma 9.6 that this induces inclusions Bn[4] → Bn+1[4] and Zn → Zn+1. Suppose
we have a sequence of Zn-representations Vn and maps ϕn : Vn → Vn+1. Following Church–
Farb, we say that the sequence {Vn} is consistent if for each n the map ϕn is equivariant
with respect to the Zn-action. The inclusions Bn[4]→ Bn+1[4] induce maps H1(Bn[4];C)→
H1(Bn+1[4];C). With respect to these maps the H1(Bn[4];C) form a consistent sequence of
Zn-representations (Lemma 9.7).

Further following Church–Farb, we say that a consistent sequence of Zn-representations
Vn satisfies representation stability if

(1) the maps ϕn : Vn → Vn+1 are injective,
(2) the span of the Zn+1-orbit of ϕn(Vn) is equal to Vn+1, and
(3) if we decompose each Vn into irreducible Zn-representations

Vn ∼=
⊕
(ρ,λ)

cρ,λ,nVn(ρ, λ)

then each of the sequences of multiplicities cρ,λ,n ≥ 0 is independent of n for n large.

We say that the Vn satisfy uniform representation stability if there is some N so that every
cρ,λ,n is independent of n for n ≥ N .

Let I3 and I4 be the subsets of [3]2 and [4]2 given by

I3 = {{1, 3}, {2, 3}}, and I4 = {{1, 3}, {2, 3}, {1, 4}, {2, 4}}.

We may assume that I3 ∈ I3 and I4 ∈ I4. Let µ2 denote the multiplicative group {±1}; we
can regard µ2 as a subgroup of GL(C). In Section 9.1 we define specific homomorphisms

ρk : ZIkk → µ2, and hence representations of ZIkk for k ∈ {3, 4}. Each ρk is the sum of the
winding numbers of the pairs of strands corresponding to the elements of Ik.

Theorem 2.5. There are Zn-equivariant isomorphisms

H1(Bn[4];C) ∼=


V2(1, (0)) n = 2

V3(1, (0))⊕ V3(1, (1))⊕ V3(ρ3, (0)) n = 3

Vn(1, (0))⊕ Vn(1, (1))⊕ Vn(1, (2))⊕ Vn(ρ3, (0))⊕ Vn(ρ4, (0)) n ≥ 4.

Further, the sequence {H1(Bn[4];C)} of Zn-modules is uniformly representation stable.

The PZn-invariants of H1(Bn[4];C) is exactly H1(PBn;C); this subspace corresponds to
the summands Vn(ρ, λ) in the statement of Theorem 2.5 with ρ = 1. Thus, the first statement
of Theorem 2.5 recovers Church–Farb’s description of H1(PBn;C) as an Sn-representation.

Also, representation stability for a sequence Vn of Zn-modules implies representation
stability for the sequence of PZn-invariants, which are Sn-modules. In this way, the second
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statement of Theorem 2.5 recovers the representation stability of H1(PBn;C) discovered by
Church–Farb [13].

It appears to be an interesting problem to determine the character table of Zn.

Level 4 hyperelliptic mapping class groups. Let Σg be a closed orientable surface of
genus g. Let Modg denote its mapping class group. This group is, for example, the (orbifold)
fundamental group of the moduli space Mg of Riemann surfaces of genus g.

The hyperelliptic mapping class group SModg is the centralizer in Modg of some fixed
hyperelliptic involution; see Figure 1. The level m mapping class group Modg[m] is the
subgroup of Modg consisting of all elements that act trivially on H1(Σg;Z/m). The level m
hyperelliptic mapping class group SModg[m] is the intersection SModg ∩Modg[m].

As we will explain in Section 11.1, there are isomorphisms B2g+1[4] ∼= SModg[4]×Z for
all g ≥ 1. Even in the absence of an inclusion Σg → Σg+1, these isomorphisms give rise to
maps SModg[4]→ SModg+1[4] as follows:

SModg[4]→ B2g+1[4]→ B2g+3[4]→ SModg+1[4],

where the first map is inclusion into the first factor, the second map is the standard inclusion,
and the third map is projection onto the first factor. The induced maps H1(SModg[4];C)→
H1(SModg+1[4];C) are injective and equivariant with respect to the Z2g+1- and Z2g+3-
actions. Since the Z-factor of B2g+1[4] is central, it follows that this factor corresponds to the
trivial representation V2g+1(1, (0)) in Theorem 2.5. We thus obtain the following consequence
of Theorem 2.5.

Corollary 2.6. For g ≥ 1, there are Z2g+1-equivariant isomorphisms

H1(SModg[4];C) ∼=

{
V3(1, (1))⊕ V3(ρ3, (0)) g = 1

V2g+1(1, (1))⊕ V2g+1(1, (2))⊕ V2g+1(ρ3, (0))⊕ Vn(ρ4, (0)) g ≥ 2.

In particular, we have

dimH1(SModg[4];Q) = 3

(
2g + 1

4

)
+ 3

(
2g + 1

3

)
+

(
2g + 1

2

)
− 1.

Further, the sequence {H1(SModg[4];C)} of Z2g+1-modules is uniformly representation stable.

In contrast to Corollary 2.6, H1(Modg[m];Q) = 0 for g ≥ 3 and m ≥ 1; see the paper
by Hain [22].

Under the map B2g+1[4] → SModg[4] from Section 11.1, the basis elements from The-
orem 2.1 map to the classes of 4th powers of Dehn twists about nonseparating curves.

The group SModg is the orbifold fundamental group of the hyperelliptic locus Hg in
Mg. The group SModg[4] is the fundamental group of any connected component Hg[4] of the
hyperelliptic locus in the moduli space of genus g Riemann surfaces C with level 4 structure,1

i.e. a symplectic basis for H1(C;Z/4). In fact, Hg[4] is a K(π, 1) space for SModg[4]. Thus
H i(SModg[4];Q) ∼= H i(Hg[4];Q) for all j ≥ 0. As such, Corollary 2.6 gives the first Betti
number of Hg[4].

For g = 2 we have SModg = Modg. In this case we have the following result.

Proposition 2.7. We have dimH3(Mod2[4];Q) ≥ 3068.

Proposition 2.7 improves on a special case of a result of Fullarton–Putman [18, Theorem
A], which gives dimH3(Mod2[4];Q) ≥ 24.

1There are
2g2(22g − 1) · · · (22 − 1)

(2g + 2)!
such components; they are mutually isomorphic.
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Albanese cohomology. For a finitely generated group Γ, the Albanese cohomology of Γ
is the subalgebra H∗Alb(Γ;Q) of the rational cohomology algebra H∗(Γ;Q) generated by
H1(Γ;Q). In other words, H∗Alb(Γ;Q) is the image of the cup product mapping

Λ∗H1(Γ;Q)→ H∗(Γ;Q).

The term “Albanese cohomology” was introduced by Church–Ellenberg–Farb in their work
on representation stability [12].

Arnol’d [2] showed that the cohomology ring of PBn is generated by degree 1 classes,
in other words H∗Alb(PBn;Q) = H∗(PBn;Q). We prove the following contrasting result.

Theorem 2.8. Let n ≥ 15. Then H∗Alb(Bn[4];Q) is a proper subalgebra of H∗(Bn[4];Q).

Although Theorem 2.8 asserts that there are cohomology classes in H∗(Bn[4];Q) that
are not cup products of classes in H1(Bn[4];Q), our proof does not produce examples of such
classes. We will derive Theorem 2.8 from the following slightly stronger result.

Theorem 2.9. For all g ≥ 7 the Albanese cohomology H∗Alb(SModg[4];Q) is a proper subal-
gebra of H∗(SModg[4];Q).

The original proofs that the cohomology groups of the pure braid groups and the pure
string motion groups are representation stable take advantage of the fact that the cohomology
algebras of both are generated in degree 1; see the papers by Church–Farb and Wilson [13, 33].
One would like to emulate this in the case of Bn[4] to prove that its higher cohomology groups
of Bn[4] are representation stable. However, as Theorem 2.8 shows, this approach cannot
work. Instead, we propose the following.

Conjecture 2.10. For each k ≥ 1 the sequence of Zn-representations Hk
Alb(Bn[4];Q) is

uniformly representation stable for n ≥ 4k.

Conjecture 2.10 may be compared with a result of Church–Ellenberg–Farb, which states
that the Albanese cohomology of the Torelli group is a finitely generated FI-module, hence
uniformly representation stable [12, proof of Theorem 7.2.2].

Hyperelliptic Torelli groups. The braid Torelli group BIn is the level 0 subgroup of Bn,
i.e. the kernel of the Burau representation evaluated at t = −1 (the latter is sometimes
called the integral Burau representation). This group, an infinite-index subgroup of Bn, is
even more mysterious than the Bn[m]. For example, it is not known if this group is finitely
generated when n ≥ 7. It is, however, known that for n = 2, 3, 4, 5, 6 have that that BIn is
isomorphic to 1, Z, F∞, F∞×Z, and F∞nF∞, respectively, where F∞ denotes the free group
of countably infinite rank. It is also known that BI7 is not finitely presented [5, Theorem
1.3]. An appealing infinite generating set for BIn, consisting of all squares of Dehn twists
about curves surrounding either 3 or 5 punctures, was identified by Brendle, Putman, and
the second author [6].

The hyperelliptic Torelli group SIg is the subgroup of SModg whose elements act triv-
ially on H1(Σg;Z). There are isomorphisms BI2g+1

∼= SIg × Z; see [7]. Using Hain’s
description [19] of the image of the second Johnson homomorphism, one can obtain a lower
bound

dimH1(BI2g+1;Q) ≥ g(g − 1)(4g2 + 4g − 3)

3
+ 1.

We will deduce an improved lower bound from Theorem 2.1 as follows.
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Theorem 2.11. For g ≥ 3 we have

dimH1(BI2g+1;Q) ≥ 1

6

(
20g4 + 12g3 − 5g2 + 9g

)
The finiteness properties of the BIn and the Bn[m] are related by the following propo-

sition, which we prove in Section 12.

Proposition 2.12. Let n be odd. If the sequence (dimH1(Bn[m];Q))∞m=1 is unbounded then
H1(BIn;Q) is infinite dimensional, and in particular BIn is not finitely generated.

We make the following conjecture.

Conjecture 2.13. For fixed n ≥ 4, the sequence (dimH1(Bn[m];Q))∞m=1 is unbounded. In
particular, H1(BIn;Q) is infinite dimensional and BIn is not finitely generated.

Theorem 2.1 provides some evidence for Conjecture 2.13; with the equalities

dimH1(Bn;Q) = 1 dimH1(PBn;Q) =

(
n

2

)
it implies

dimH1(Bn;Q)� dimH1(Bn[2];Q)� dimH1(Bn[4];Q).

From the above descriptions of BIn for 2 ≤ n ≤ 6 we have thatH1(BIn;Q) is not finite dimen-
sional for 4 ≤ n ≤ 6. Brendle, Childers, and the second author showed that Hg−1(BI2g+1;Q)
is infinite dimensional [5, Theorem 1.3]. It is not known if any of the other Hk(BIn;Q) are
infinite dimensional.

The group BI2g+1 is isomorphic to the direct product of Z with fundamental group
of any component of the branch locus of the period map on Torelli space [20]. Therefore
Conjecture 2.13 implies that this fundamental group is infinitely generated.

Torsion points on the characteristic variety for the braid arrangement. Let Xn ⊂
Cn denote the complement of the braid arrangement

Xn = Cn \ {(x1, . . . , xn) ∈ Cn | xi = xj some i, j}
There is a one-to-one correspondence between homomorphisms PBn

∼= π1(Xn)→ C× and 1-
dimensional complex local systems over Xn; to a homomorphism ρ : PBn → C× we associate
the 1-dimensional local system Cρ with monodromy ρ. Thus the space of all such local
systems can be identified with the algebraic torus Hom(PBn,C×), which we identify with

(C×)(
n
2) via ρ→ (ρ(T12), . . . , ρ(Tn−1,n)).

For d ≥ 1, the dth characteristic variety Vd(Xn) of Xn is the subvariety of (C×)(
n
2)

consisting of all ρ ∈ Hom(PBn,C×) such that dimH1(Xn;Cρ) ≥ d. One reason for studying
the characteristic varieties of Xn is that they give fine information about the topology of its
abelian covers. A general theorem of Arapura [1] implies that Vd(Xn) is a union of algebraic
subtori, possibly with some components translated away from the identity 1 by finite-order
elements. Following Cohen–Suciu [14], we denote by V̌d(Xn) the union of the components of
Vd(Xn) that contain 1 (these are the so-called central components).

Let ρI : PZn → µ2 denote the homomorphism giving the irreducible representation VI
of PZn (see Section 8) and denote the unique extension PBn → µ2 ⊂ C× by ρI as well.

Theorem 2.14. Let n ≥ 3. For d ≥ 2, the characteristic variety Vd(Xn) contains no
2-torsion. The set of 2-torsion points on V1(Xn) is {ρg(I3)}g∈Sn ∪ {ρg(I4)}g∈Sn, which is

contained in V̌1(Xn).
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For n ≤ 4, all known components of the characteristic varieties of Xn contain 1 but it
is an open problem to determine whether this holds for general n. Arapura’s theorem implies
that any component of Vd(Xn) not containing 1 must contain some point of finite order.
Therefore, if one could show that every torsion point on Vd(Xn) were contained in V̌d(Xn),
it would follow that V̌d(Xn) = Vd(Xn). By Theorem 2.14, any translated components of
Vd(Xn), should they exist, would have to be translated by an element of order at least 3.

Outline of the paper. The remainder of the paper essentially has three parts. The first
part, Sections 3–7, is devoted to the proof of Theorem 2.1. In Section 3 we define maps

ψ : Bn[4]→ Z(n2),

ψi∞ : Bn[4]→ Z(2n−1
2 ) 1 ≤ i ≤ n, and

ψij : Bn[4]→ Z(2n−2
2 ) 1 ≤ i < j ≤ n

that we will use to detect nontrivial classes in H1(Bn[4];Q). The map ψ is simply the
restriction of the abelianization of PBn. This map is clearly not sufficient for our purposes,
since the dimension of H1(Bn[4];Q) asserted by Theorem 2.1 is much larger than that of
H1(PBn;Q) =

(
n
2

)
. The ψij are designed to detect elements of H1(Bn[4];Q) coming from the

commutator subgroup of PBn. Roughly, they are defined as follows: lift an element of Bn[4]
to a double cover of Dn and apply the abelianization of the pure braid group of the cover. We
show at the end of Section 3 that these maps do indeed detect commutators of pure braids.

With the ψij in hand, we complete the proof of Theorem 2.1 for n = 3 in Section 4. That
the given basis elements are independent is proved using the ψij and the fact that the first
Betti number is 6, which comes easily from the equality B3[4] = PB2

3 and the isomorphism
PB3

∼= F2 × Z.
The proof of Theorem 2.1 for n ≥ 4 is carried out in the next three sections. In Section 5

we use the ψij to show that the basis elements from Theorem 2.1 are linearly independent;
this step is similar in spirit to the n = 3 case, and is complicated mainly by the large number
of homology classes being considered. Then in Section 6 we give an infinite spanning set
for H1(Bn[4];Q) whose elements have a particularly simple form: they are the images of
squares of Dehn twists about curves surrounding two marked points. There is an obvious
spanning set for H1(Bn[4];Q) coming from the generating set for Bn[4] given by Brendle and
the second author, namely the squares of Dehn twists, and our spanning set is a subset of
this one. Finally, in Section 7 we complete the proof of Theorem 2.1. This section is the
technical heart of the proof. The idea is to whittle down the spanning set from Section 6
using a series of relations in H1(Bn[4];Q). The relations are obtained using a combination
of the squared lantern relation, a Jacobi identity, the Witt–Hall identity, and the standard
Artin relations for PBn.

The second part of the paper is dedicated to the proof of Theorem 2.5. As above, this
first requires an investigation of the representation theory of Zn. In particular, the statement
of representation stability requires a naming system for its irreducible representations. This
is carried out in Section 9.2. The main difficulty stems from the fact that Zn does not split
as a semi-direct product over Sn. We then prove Theorem 2.5 in Section 9.3 by exhibiting
the irreducible representations from the statement of the theorem as explicit submodules
and by verifying the three parts of the definition of uniform representation stability. These
submodules are the spans of the Zn-orbits of elements aij , x3, and x4. The main obstacle
towards proving Theorem 2.5 is simply locating the elements x3 and x4 in the first place.
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Finally, the third part of the paper gives the proofs of the various applications of our
main results. First in Section 10 we quickly dispense with Theorem 2.3 as a consequence of
Theorem 2.1. Then in Section 11 we Theorem 2.9 and then use this to prove Theorem 2.8.
For Theorem 2.9, the basic idea is to compare the dimension of H1(SModg[4];Q) (Corol-
lary 2.6) to the Euler characteristic of SModg[4]. The latter is an enormous negative number,
signaling the presence of large amounts of cohomology in odd degrees. A careful comparison
of the odd Betti numbers of SModg[4] with the dimensions of the odd graded pieces of the
exterior algebra Λ∗H1(SModg[4];Q) then gives the result. At the end of Section 11 we prove
Proposition 2.7 and Theorem 2.2.

Next, in Section 12 we prove Theorem 2.11. The idea is to show that there is a surjective
map H1(BI2g+1;Q)→ H1(SModg[4];Q) and that the direct sum of this map with the second
Johnson homomorphism is surjective. The result is then obtained by adding together the
dimensions of the targets of these two maps. Finally, in Section 13 we prove Theorem 2.14
as an application of Theorem 2.5.

Acknowledgments. The authors would like to thank Lei Chen, Jordan Ellenberg, and
Benson Farb for encouraging us to examine the role of representation stability in the homology
of the level 4 braid group. We would also like to thank Santana Afton, Weiyan Chen, Nir
Gadish, Marissa Loving, Jeremy Miller, Christopher O’Neill, Peter Patzt, Andrew Putman,
and Oscar Randal-Williams for helpful comments and conversations. This material is based
upon work supported by the National Science Foundation under Grant Nos. DMS - 1057874
and DMS - 1745583.

3. Abelian quotients from double covers

The goal of this section is to define and describe the homomorphisms

ψ : Bn[4]→ Z(n2),

ψi∞ : Bn[4]→ Z(2n−1
2 ) 1 ≤ i ≤ n, and

ψij : Bn[4]→ Z(2n−2
2 ) 1 ≤ i < j ≤ n

discussed in Section 2. We will denote the induced maps onH1(Bn[4];Q) by the same symbols.
We will use these homomorphisms in Sections 4 and 5 to detect non-zero homology classes
in H1(Bn[4];Q).

The map ψ will simply be defined as the restriction of the abelianization of PBn. As
discussed in Section 2, the ψij will be defined in terms of 2-fold covers of Dn. In Section 3.1
we describe the 2-fold covers used. Then in Section 3.2 we define the ψij and in Section 3.3
we compute the images under the ψij of each square of a Dehn twist in Bn[4]. Finally we in
Section 3.4 we give a naturality (equivariance) formula for the ψij and use this formula to
compute several examples.

One of the examples we compute at the end of the section is ψ1∞([T 2
23, T12]). In par-

ticular we show it is non-zero. Of course ψ evaluates to zero on the commutator subgroup of
PBn, and so this computation verifies that the ψij are indeed giving more information than
ψ.

3.1. Double covers of the disk. Denote the set of marked points of Dn by P . There is a
correspondence

H1(Dn, P ∪ ∂Dn;Z/2)←→ {2-fold branched covers of (Dn, P )}/ ∼
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Here, a branched cover over (Dn, P ) is a branched cover over Dn where the set of branch
points lies in P .

The above correspondence can be explained as a sequence of three correspondences as
follows. First, it is a consequence of Lefschetz duality that H1(Dn, P∪∂Dn;Z/2) is isomorphic
to H1(D◦n;Z/2), where D◦n is the surface obtained from Dn by removing the n marked points.
Second, by basic covering space theory, the latter is in bijective correspondence with the
equivalence classes of 2-fold covers of D◦n. Third, 2-fold covers over D◦n are in bijection
with 2-fold branched covers of Dn with branch set in P ; we pass from one to the other by
adding/subtracting the points of P and its preimage. The stated correspondence follows.

As above, let [n] denote the set {1, . . . , n} and let [n]2 denote the set of pairs of elements

of [n]. Also let [n]∞ denote [n] ∪ {∞} and let [n]
2
∞ be the set of pairs of elements of [n]∞.

There is a natural bijection between [n] and P , where i corresponds to the ith marked point.
If we think of ∂Dn has having the label ∞ then there is a further bijection between [n]∞ and
the set of connected components of P ∪ ∂Dn. There is a map

{[n]2∞} → {2-fold branched covers of (Dn, P )}/ ∼

defined as follows. For an element of [n]
2
∞ we obtain a nontrivial element of H1(Dn, P ∪

∂Dn;Z/2) by choosing an arc between the corresponding components of P ∪ ∂Dn (the arc
should be disjoint from P ∪ ∂Dn on its interior). This homology class, hence the resulting
equivalence class of covers, is independent of the choice of arc. We refer to any resulting
cover of Dn as an (ij)-cover of Dn. An (i∞)-cover of Dn is a disk with 2n− 1 marked points
and any other (ij)-cover is an annulus with 2n− 2 marked points.

As elements of [n]
2
∞ only give equivalence classes of branched covers over Dn, it will be

helpful to fix specific (ij)-covers once and for all, as follows. First we fix a copy of Dn once
and for all, as the closed unit disk in the plane with the marked points along the x-axis.

Then for each i we let αi∞ be the vertical arc in Dn connecting the ith marked point
to the upper boundary of Dn. And for each {i, j} ∈ [n]2 we let αij be the semi-circular arc
that connects the ith and jth marked points and lies above the x-axis.

We construct the specific (ij)-covers by taking two copies of Dn, cutting each along the
corresponding αij-arc and then gluing the two cut disks together. Each cut disk corresponds
to a fundamental domain for the deck group. We think of the αij as branch cuts.

In the (i∞)-cover D̃n, each marked point of Dn has two pre-images except for the ith,

which has one. We label the preimage in D̃n of the ith marked point with i. For each j 6= i
we label the preimages of the jth marked point in the first and second fundamental domains
of D̃n with j and j′, respectively. For an (ij)-cover with j 6= ∞ the marked points in D̃n
are labeled similarly. We denote by [n]′ the set of symbols {1′, . . . , n′}. So the labels of the

marked points of D̃n lie in [n] ∪ [n]′.

We remark that the cover D̃n, and hence the labeling of its marked points, is sensitive
to the homotopy class of each αij , not just the corresponding class in H1(Dn, P ∪ ∂Dn;Z/2).

3.2. Homomorphisms from double covers. Our next goal is to define ψ and the ψij .
The ψij will be defined as follows: given an element of Bn[4], lift it to the corresponding

cover D̃n, and then take an abelian quotient of the pure mapping class group PMod(D̃n). In
general, for a surface S with marked points, PMod(S) is the subgroup of Mod(S) given by
the kernel of the action on the set of marked points.

We will carry out the plan described in the previous paragraph by explicitly describing
the lifting maps and the abelian quotients. The latter will be aided by another homomor-
phism, called the capping homomorphism, which we define along the way.



REPRESENTATION STABILITY IN THE LEVEL 4 BRAID GROUP 13

Lifting. We begin with the lifting homomorphism. Consider an element of [n]
2
∞ and let D̃n

denote the corresponding branched cover. There is a homomorphism

Lift : PBn → Mod(D̃n),

defined as follows. Let f ∈ PBn
∼= PMod(Dn) and let φ : Dn → Dn be a representative

homeomorphism fixing the boundary. Because f lies in PBn it fixes the element of H1(Dn, P∪
∂Dn;Z/2) corresponding to D̃n. Hence φ lifts to a homeomorphism of D̃n. There is a unique

lift that induces the identity map on ∂D̃n; let f̃ be the corresponding element of Mod(D̃n).
Then Lift is defined by

Lift(f) = f̃ .

Lemma 3.1. Let n ≥ 2, let {i, j} ⊂ [n]∞, and let D̃n denote the corresponding branched

cover of Dn. The lifting homomorphism Lift : PBn → Mod(D̃n) restricts to a homomorphism

Bn[4]→ PMod(D̃n).

Proof. As mentioned in Section 2, it is a theorem of Brendle and the second author that
Bn[4] is equal to the subgroup of PBn generated by squares of Dehn twists. Therefore, it is

enough to show that if c is a simple closed curve in Dn then Lift(T 2
c ) lies in PMod(D̃n).

The preimage c̃ in D̃n of a simple closed curve c in Dn is a 2-fold cover of c. In particular
it has one or two components. In the first case, T 2

c lifts to the Dehn twist about c̃. In the
second case, T 2

c lifts to the product of the squares of the Dehn twists about the components

of c̃. In both cases, the lift lies in PMod(D̃n), as desired. �

Capping. We now proceed to the capping homomorphism. Let S be a surface with boundary.
We choose one distinguished component of the boundary of S. Let Ŝ be the surface obtained
by gluing a disk to this component. There is a homomorphism

Cap : Mod(S)→ Mod(Ŝ),

defined as follows: given an element f of Mod(S) we can represent it by a homeomorphism

of S that fixes the boundary, and then extend this homeomorphism to Ŝ in such a way that
the extension is the identity on the complement of S. The resulting mapping class is Cap(f).

The abelianization of the pure braid group. The abelianization of the pure braid group is:

PBn /[PBn,PBn] ∼= H1(PBn;Z) ∼= Z(n2).

The abelianization map

PBn → Z(n2)

can be described as follows. There are
(
n
2

)
forgetful homomorphisms

PBn → PB2
∼= Z

obtained by forgetting all but two of the marked points in Dn, and the abelianization of PBn

is the direct sum of these homomorphisms.
We now give a slightly different, and more natural, description of the abelianization of

PBn. We will denote the element {i, j} of [n]2 by (ij) (so (ji) = (ij)). Let Z{(ij)}i<j denote
the free abelian group on the set of elements of [n]2. We can write the abelianization of PBn

as

PBn → Z{(ij)}i<j ,
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where the (ij)-factor of Z{(ij)}i<j corresponds to the map PBn → PB2 where all marked
points except the ith and the jth are forgotten. This notation will be especially useful when
the labels of the marked points are not natural numbers, as is the case in our (i∞)- and
(ij)-covers.

For any subset A = {i1, i2, · · · , ik} of {1, . . . , n} there is an associated element of the
free abelian group Z{(ij)}i<j . This element may be denoted by (A) or (i1i2 · · · ik) and it is
defined as

(i1i2 · · · ik) =
∑
p<q

(ipiq).

For example, (123) = (12) + (13) + (23). In this notation it makes sense to interpret (∅) as
the identity. This language makes it convenient to describe the image of a Dehn twist under
the abelianization of PBn: if c is a simple closed curve in Dn surrounding the marked points
{i1, . . . , ik}, then

Tc 7→ (i1i2 · · · ik).
The braid group Bn acts on PBn, hence its abelianization, by conjugation. The action of
a particular element f ∈ Bn depends only on its image in the quotient Bn /PBn, which is
isomorphic to the symmetric group on [n]. If the image of f is the permutation σ then the
action f∗ on Z{(ij)}i<j is given by f∗(ij) = (σ(i)σ(j)).

The definition of ψ. As advertised, we define

ψ : Bn[4]→ Z{(ij)}i<j ∼= Z(n2)

as simply the restriction of the abelianization of PBn. From our description of the latter we
immediately obtain a formula for the image of the square of an arbitrary Dehn twist under
the map ψ: if c is a simple closed curve in Dn and A is the set of labels of marked points in
the interior of c, then

ψ(T 2
c ) = 2(A).

If f ∈ Bn maps to f∗ in the symmetric group on [n] then

ψ(f · T 2
c ) = 2(f∗(A)).

Our goal in the remainder of this section is to define the ψij and obtain similar formulas for
the image of a square of a Dehn twist.

The definitions of the ψij . We are finally ready to define the ψij . First, for i ∈ [n] we define
ψi∞ as the composition

ψi∞ : Bn[4]
Lift→ PMod(D̃n)→ Z{(k`)}{k,`}⊆Li∞

∼= Z(2n−1
2 ),

where D̃n is the (i∞)-cover of Dn and Li∞ is the set of labels of the marked points of D̃n. The
existence of the first map is ensured by Lemma 3.1. The second map is the abelianization.
The isomorphism at the end comes from the fact that the (i∞)-cover is a disk with 2n − 1
marked points, with Li∞ = [n] ∪ [n]′ \ i′.

For {i, j} ∈ [n]2 we denote by D̃n the (ij)-cover of Dn and by Lij the corresponding set
of marked points. Then we define ψij in the analogous way. The only difference is that we
must apply the capping homomorphism (as above, we cap the component of the boundary
lying in the second fundamental domain, where the marked points are labeled with primed
numbers):

ψij : Bn[4]
Lift→ PMod(D̃n)

Cap→ PB2n−2 → Z{(k`)}{k,`}⊆Lij
∼= Z(2n−2

2 ).
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Figure 2. A representative case for the proof of Lemma 3.2

The induced maps. Since ψ and the ψij are maps to abelian groups, they also induce maps

ψ : H1(Bn[4];Q)→ Q(n2),

ψi∞ : H1(Bn[4];Q)→ Q(2n−1
2 ) 1 ≤ i ≤ n, and

ψij : H1(Bn[4];Q)→ Q(2n−2
2 ) 1 ≤ i < j ≤ n

As shown here, we refer to the induced maps by the same symbols as the original maps.

3.3. Computations. Our next goal is to describe the images under the ψij of a square of
a Dehn twist, first for squares of Artin generators and then for arbitrary squares of Dehn
twists. The statement of the first lemma requires some notation. Let {i, j} be an element of

[n]
2
∞ with i < j and let {k, `} be an element of [n]2 with k < `. We say that {i, j} and {k, `}

are linked if
i < k < j < ` or k < i < ` < j

and we say that they are unlinked if

i < k < ` < j or k < i < j < `.

Also, we write [n \ k, `] for [n] \ {k, `}.

Lemma 3.2. Let k, ` ∈ [n] with k < ` and let i, j ∈ [n]∞ with i < j. Then

ψij(T
2
k`) =



(k``′) {i, j} ∩ {k, `} = {k}
(kk′`) {i, j} ∩ {k, `} = {`}
2(k`) + 2(k′`′) {i, j}, {k, `} unlinked

2(k`′) + 2(k′`) {i, j}, {k, `} linked

2 ({k, `} ∪ [n \ k, `]′) + 2([n \ k, `]′) {i, j} = {k, `}

Proof. Let c be the curve in Dn corresponding to the Artin generator Tk`. As discussed in the
proof of Lemma 3.1, the preimage in D̃n is either a single curve c̃ or a pair of curves c̃1, c̃2.
In the first case Lift(T 2

c ) is equal to Tc̃ and in the second case it is equal to T 2
c̃1
T 2
c̃1

.
By the way the ψij are defined, and because we already have a formula for the image of

a Dehn twist in the abelianization the pure braid group, it remains to determine the preimage
of c in each case. In fact, the only relevant feature of the preimage of c is the set of marked
points that it surrounds.

There are nine cases, as the fifth case of the lemma only makes sense for (ij)-covers
with i, j 6= ∞. A representative picture for the case where j 6= ∞ and {i, j} and {k, `} are
linked is shown in Figure 2. The curve c is the boundary of a regular neighborhood of the
arc α = αk`. Therefore the preimage of c is the boundary of a regular neighborhood of the
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preimage of α. The path lift of α starting at the marked point k crosses the preimage of αij
and ends at `′; this path lift is hence a connected component of the preimage of α. Similarly,
the other component of the preimage of α is an arc connecting the marked points k′ and `.
So the preimage of c is a pair of curves, one surrounding the marked points k and `′ and one
surrounding the marked points k′ and `. It follows that ψij(T

2
k`) = 2(k`′) + 2(k′`), as in the

statement of the lemma. The other cases are handled similarly. �

Closed formulas. We also have a closed formula for an arbitrary ψij(T
2
c ). The formula has

three parts, depending on how many of {i, j} lie in the interior of c. Since we will not require
these general formulas in the sequel, we do not supply the proofs.

Let A be the set of labels of the marked points lying in the interior of c. In the case
where A ∩ {i, j} = {i} the formula is:

ψij(T
2
c ) =

(
A ∪ (A− {i})′

)
.

We now suppose that A ∩ {i, j} = ∅. In this case there is a natural partition of A into
two subsets: two elements of A are in the same subset if an arc that lies in the interior of c
and connects the corresponding marked points intersects αij in an even number of points. If
we denote the two subsets of A by A1 and A2, the formula is

ψij(T
2
c ) = 2(A1 ∪A′2) + 2(A′1 ∪A2).

In the third and final case, where {i, j} ⊆ A, we need to define two subsets B and C
of [n] \ A. An element of [n] \ A lies in B if and only if an arc that lies in the exterior of c
and connects that marked point to ∂Dn crosses αij in an even number of points. Then C is
the complement of B in [n] \A. We have in this case

ψij(T
2
c ) = 2(A ∪ C ∪B′ ∪ (A \ {i, j})′) + 2(C ∪B′).

It is straightforward to check that in the case where Tc = Tk` our formulas here agree with
Lemma 3.2. For instance, in the third case we have A = {k, `}, B = [n] \ {k, `}, and C = ∅.
Thus our formula gives that ψk`(T

2
k`) is

2(A ∪ C ∪B′ ∪ (A \ {i, j})′) + 2(C ∪B′) = 2({k, `} ∪ [n \ k, `]′) + 2([n \ k, `]′),

as per Lemma 3.2.

3.4. Naturality. Our final task in this section to give a formula for the image under ψij of

Tk` · f = Tk`fT
−1
k`

in terms of the image of f , where f ∈ Bn[4] and Tk` is an Artin generator for PBn. Since we
already have a formula for each ψij(T

2
k`) (Lemma 3.2), this will give a formula for the image

under ψij of an arbitrary Tk` · T 2
pq.

Let {i, j} ∈ [n]
2
∞ with i < j and k, ` ∈ [n] with k < `. We define a permutation ιijk` of

the set [n] ∪ [n]′ as follows:

ιijk` =


(` `′) {i, j} ∩ {k, `} = {k}
(k k′) {i, j} ∩ {k, `} = {`}
id otherwise.

In this formula we are using cycle notation for the symmetric group on [n] ∪ [n]′, so (k k′)
and (` `′) are transpositions.
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Let {i, j} ∈ [n]
2
∞, let D̃n be the corresponding branched cover of Dn, and let Lij be the

set of labels of the marked points of D̃n, as in Section 3.2. We may regard ιijk` as a permutation

of Lij , and as such it acts on the abelianization of PMod(D̃n). We abuse notation and write

the corresponding automorphism of the abelianization as ιijk`.

Lemma 3.3. Let {i, j} ∈ [n]
2
∞ with i < j and {k, `} ∈ [n]2 with k < `. Let f be an element

of Bn[4]. Then

ψij(Tk` · f) = ιijk` (ψij(f)) .

Proof. For concreteness, we suppose that j 6= ∞; the case where j = ∞ is essentially the
same. As in Section 3.2, the set Lij is [n] ∪ [n]′ \ {i′, j′}. Let ψ denote the abelianization of

PMod(D̃n) ∼= PB2n−2. We have that Cap ◦Lift(Tk`) is an element of Mod(D̃n) ∼= B2n−2. As

such it acts on PMod(D̃n) by conjugation. As in Section 3.2 we denote the induced action
on the abelianization by Cap ◦Lift(Tk`)∗. We have:

ψij(Tk` · f) = ψ(Cap ◦Lift(Tk` · f))

= ψ(Cap ◦Lift(Tk`) · Cap ◦Lift(f))

= Cap ◦Lift(Tk`)∗ψ(Cap ◦Lift(f))

= Cap ◦Lift(Tk`)∗ψij(f).

It remains to check that Cap ◦Lift(Tk`)∗ is equal to ιijk`.
If {i, j} ∩ {k, `} is not a singleton, then the simple closed curve c in Dn corresponding

to {k, `} has an even number of intersections with the arc αij . Thus the preimage of c in

D̃n is a pair of curves. As in the proof of Lemma 3.1, it follows that Cap ◦Lift(Tk`) lies in

PB2n−2. This agrees with the fact that ιijk` is trivial in this case.
Suppose that on the other hand {i, j} ∩ {k, `} = {k}. In this case the simple closed

curve c in Dn corresponding to {k, `} intersects the arc αij in a single point. So the preimage

of c in D̃n is a single curve c̃ surrounding the points labeled k, `, and k′. And Cap ◦Lift(Tk`)
interchanges the points labeled k and k′ (the square of Cap ◦Lift(Tk`) is the Dehn twist about
c̃). This again agrees with the definition of ιk`ij . The case {i, j}∩ {k, `} = {`} is exactly the
same, with the roles of k and ` interchanged. �

We now give three sample computations with Lemmas 3.2 and 3.3. First, for any n ≥ 3
we have:

ψ1∞(T12 · T 2
23) = ι1∞12

(
ψ1∞(T 2

23)
)

= ι1∞12
(
2(23) + 2(2′3′)

)
= 2(23′) + 2(2′3).

Second, for any n ≥ 3 we have:

ψ12(T23 · T 2
12) = ι1223

(
ψ12(T

2
12)
)

= ι1223
(
2(123′4′ · · ·n′) + 2(3′4′ · · ·n′)

)
= 2(1234′ · · ·n′) + 2(34′ · · ·n′).
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Third, for any n ≥ 3 we have:

ψ1∞([T 2
23, T12]) = ψ1∞(T 2

23(T12 · T−223 ))

= ψ1∞(T 2
23)ι

1∞
12

(
ψ1∞(T−223 )

)
= 2(23) + 2(2′3′)− ι1∞12 (2(23) + 2(2′3′))

= 2(23) + 2(2′3′)− 2(2′3)− 2(23′).

As in Section 2, we refer to the image of T 2
k` in H1(Bn[4];Q) by τk`. Regarding the ψij

as maps defined on H1(Bn[4];Q), we can reinterpret the above calculations as:

ψ1∞(T12τ23) = 2(23′) + 2(2′3), ψ12(T23τ12) = 2(1234′ · · ·n′) + 2(34′ · · ·n′), and

ψ1∞((1− T12)τ23) = 2(23) + 2(2′3′)− 2(2′3)− 2(23′).

4. Proof of Theorem 2.1 for three strands

In this section we prove Theorem 2.1 for the case of B3[4]. This result is stated as
Corollary 4.3 below. We begin by showing that dimH1(B3[4];Q) = 6 (Proposition 4.1).
Then we show that a set S ′ closely related to the set S from Theorem 2.1 forms a basis
(Proposition 4.2). We then use this to prove Corollary 4.3.

Below, we denote by PMod0,m the pure mapping class group of a sphere with m marked
points.

Proposition 4.1. The dimension of H1(B3[4];Q) is equal to 6.

Proof. We may glue a disk with one marked point to the boundary of D3 in order to obtain
a sphere with four marked points. There is a resulting capping homomorphism

PB3 → PMod0,4 .

This map is defined analogously to the capping homomorphism in Section 3.2. The kernel
is the infinite cyclic group generated by T∂ , the Dehn twist about the boundary of D3 [17,
Proposition 3.19].

Since B3[4] = PB2
3 and since 〈T∂〉 ∩ B3[4] = 〈T 2

∂ 〉 we may restrict the capping homo-
morphism to obtain a short exact sequence

1→ 〈T 2
∂ 〉 → B3[4]→ PMod2

0,4 → 1

where PMod2
0,4 denotes the subgroup of PMod0,4 generated by all squares. This extension

gives rise to an exact sequence in homology

Q〈T 2
∂ 〉 → H1(B3[4];Q)→ H1(PMod2

0,4;Q)→ 0

We analyze the terms on the right and left in turn. We claim that the term on the right
is isomorphic to Q5. By the Birman exact sequence [17, Theorem 4.6] and the fact that
PMod0,3 is trivial [17, Proposition 2.3] we have that PMod0,4 is a free group of rank 2. The

index of PMod2
0,4 in PMod0,4 is 4 (it is the kernel of the mod 2 abelianization). By the

Nielsen–Schreier formula the former is a free group of rank 5 and the claim follows.
We next claim that the first map is injective. The sequence of inclusions 〈T 2

∂ 〉 →
B3[4] → PB3 induces maps on homology Q〈T 2

∂ 〉 → H1(B3[4];Q) → H1(PB3;Q). It follows
from the discussion in Section 3.2 that the composition is nontrivial, and the claim follows.

It follows from the two claims that dimH1(B3[4];Q) = 1 + 5 = 6. �

Consider the set S ′ = S1 ∪ S ′2 where

S1 = {τ12, τ13, τ23} and S ′2 = {(1− T13)τ12, (1− T23)τ13, (1− T12)τ23}
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Proposition 4.2. The set S ′ is a basis for H1(B3[4];Q).

Proof. The first step is to compute the values of ψ on the elements of S ′. We find that

ψ(τ12) = 2(12) ψ((1− T13)τ12) = 0

ψ(τ13) = 2(13) ψ((1− T23)τ13) = 0

ψ(τ23) = 2(23) ψ((1− T12)τ23) = 0.

Thus {τ12, τ13, τ23} is linearly independent and the span of S ′2 is contained in the kernel of ψ.
Thus it suffices to show that S ′2 is linearly independent. Let δij denote (ij)+(i′j′)−(ij′)−(i′j).
The images of the elements of S ′2 under the ψi∞ are as shown in the following table (the top-
right entry was computed as an example in Section 3.4):

(1− T13)τ12 (1− T23)τ13 (1− T12)τ23
ψ1∞ 0 0 2δ23

ψ2∞ 0 −2δ13 0

ψ3∞ 2δ12 0 0

Since each element of S ′2 has nontrivial image under exactly one ψi∞ it follows that S ′2
is linearly independent, and the proposition follows. �

As in Section 2, let S = S1 ∪ S2, where

S2 = {T13τ12, T23τ13, T12τ23}.
The set S lies in the span of S ′ and vice versa. Since the two sets have the same cardinality,
we have the following corollary of Proposition 4.2, which is the n = 3 case of Theorem 2.1.

Corollary 4.3. The set S is a basis for H1(B3[4];Q).

5. A linearly independent set

Let S be the subset of H1(Bn[4];Q) from Theorem 2.1. The goal of this section is to
prove the “lower bound” for Theorem 2.1, namely, that S is linearly independent (Proposi-
tion 5.1 below). The proof will make use of the homomorphisms introduced in Section 3.

As in Section 4 we will prove that S is linearly independent by showing that a slightly
different set S ′ is linearly independent. Specifically, let S ′ = S1 ∪ S ′2 ∪ S ′3, where

S1 = {τij | 1 ≤ i < j ≤ n},
S ′2 = {(1− Tjk)τij , (1− Tjk)τik, (1− Tij)τjk | 1 ≤ i < j < k ≤ n}, and

S ′3 = {(1− Ti`)(1− Tjk)τij , (1− Tij)(1− Tk`)τik, (1− Tik)(1− Tj`)τi` | 1 ≤ i < j < k < ` ≤ n}.

For a group G and g, h ∈ G we denote by [g, h] the commutator ghg−1h−1. The elements
(1 − Tk`)τij are the images of the commutators [Tk`, T

2
ij ] in H1(Bn[4];Q). Similarly, the

(1− Tpq)(1− Tk`)τij are the images of [Tpq, [Tk`, T
2
ij ]].

Proposition 5.1. For all n ≥ 4 the sets S and S ′ are linearly independent.

In the proof we use a homomorphism Fn defined as follows. Since Bn[4] is the subgroup
of PBn generated by all squares, there are well-defined maps Bn[4] → Bn−k[4] for all 0 ≤
k < n obtained by forgetting k of the marked points in Dn. There are thus induced maps
H1(Bn[4];Q) → H1(Bn−k[4];Q). By introducing formal variables εijk`, εijk and εij we can
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combine the maps with 2 ≤ n − k ≤ 4 into a single homomorphism Fn. When n = 4 it will
also be convenient to use a function F̄4 that is defined in the same way as F4 except without
the terms corresponding to quadruples:

F̄4 : H1(Bn[4];Q)→

 ⊕
i<j<k

H1(B3[4];Q)⊗ εijk

⊕⊕
i<j

H1(B2[4];Q)⊗ εij

 ,

where εijk corresponds to the map Bn[4] → B3[4] obtained by forgetting the marked point
not labeled by i, j, or k and εijk corresponds to the map Bn[4]→ B2[4] obtained by forgetting
the marked point not labeled by i or j.

Proof of Proposition 5.1. We proceed in two steps, first dealing with the case n = 4 and then
the general case. In both cases it suffices to show that S ′ is independent, since (as in the
proof of Corollary 4.3) each element of S lies in the span of S ′ and vice versa.

We now proceed with the proof for the case n = 4. We first claim that S1 is linearly
independent. For each i < j we have

F̄4(τij) = τij ⊗ εij +
∑

τij ⊗ εabc,

where the sum is over all triples (a, b, c) with a < b < c such that i, j ∈ {a, b, c}. Since each
εij only appears in the image of τij , and since H1(B2[4];Q) is non-zero, the claim follows.

We next claim that S1∪S ′2 is linearly independent. We begin by computing the images
of the elements of S ′2 under F̄4. For fixed i < j < k, we have

F̄4((1− Tjk)τij) = (1− Tjk)τij ⊗ εijk,
F̄4((1− Tjk)τik) = (1− Tjk)τik ⊗ εijk, and

F̄4((1− Tij)τjk) = (1− Tij)τjk ⊗ εijk.

First of all, since there are no εij terms here, it is enough to check that S ′2 is independent.
Second, since exactly three of the twelve elements of S ′2 have an εijk term in their images, it
is enough to check that these three elements are linearly independent. By replacing i, j, and
k with 1, 2, and 3, we see that this is equivalent to the statement that the set S ′2 from the
proof of Proposition 4.2 is independent. Applying that proposition, the claim is proven.

The set S ′3 lies in the kernel of F̄4, and so to prove the n = 4 case it suffices to show
that S ′3 is linearly independent. To do this we compute the images under ψ12, ψ13, and ψ14:

(1− T14)(1− T23)τ12 (1− T12)(1− T34)τ13 (1− T13)(1− T24)τ14
ψ12 4δ34 0 0

ψ13 0 4δ24 0

ψ14 0 0 4δ23

As in the proof of Proposition 4.2 the symbol δij denotes the element (ij)+(i′j′)−(ij′)−(i′j).
It is clear from the table that the image of S ′3 is independent, and so it remains to verify

the entries of the table. The calculations for the three rows are similar. We show details for
only the first one. For this we have

(1− T14)(1− T23)τ12 = τ12 − T14τ12 − T23τ12 + T14T23τ12

By Lemma 3.2, the image of τ12 under ψ12 is 2(123′4′) + 2(3′4′). By Lemma 3.3, the images
of T14τ12, T23τ12, and T14T23τ12 are 2(123′4′) + 2(3′4′), 2(123′4) + 2(3′4), and 2(1234) + 2(34).
The calculation in the table follows. This completes the proof of the n = 4 case.
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We now proceed to the general case. The only elements of S ′ detected by the compo-
nents of Fn corresponding to pairs of marked points are the elements of S1. The set S1 is
linearly independent for the same reason it is in the proof of the n = 4 case, namely, the fact
that H1(B2[4];Q) is nontrivial. It then remains to show that S ′2 ∪S ′3 is linearly independent.
The only elements of the latter detected by the components of Fn corresponding to triples of
marked points are the elements of S ′2. By applying Proposition 4.2 to each choice of triple,
we conclude that S ′2 is linearly independent. It then remains to check that S ′3 is linearly inde-
pendent. This follows by evaluating Fn on S ′3 and applying the n = 4 case of the proposition.
This completes the proof. �

6. A spanning set in terms of Artin generators

The main goal of this section is to prove the following proposition. In the statement
{Tk`} is the set of Artin generators for PBn.

Proposition 6.1. For all n ≥ 3, the Q[PBn]-module H1(Bn[4];Q) is generated by {τij}.
Equivalently, the vector space H1(Bn[4];Q) is spanned by

T = {(1− T1) · · · (1− Tm)τij | m ≥ 0, T1, . . . , Tm ∈ {Tk`}}.

We now explain why the two statements of the proposition are equivalent. Clearly any
element of T lies in the module spanned by the τij . For the other direction, suppose we have
an element of H1(Bn[4];Q) of the form Tτij with T ∈ PBn. We first write this as T1 · · ·Tmτij
with each Ti ∈ {Tk`} (note that no inverses are needed because the actions of Ti and T−1i are
the same). Then we may inductively apply the formula Tτij = −(1− T )τij + τij in order to
express the original element as a linear combination of elements of T .

The boundary twist. Let T∂ denote the element of PBn corresponding to the Dehn twist
about ∂Dn, and let τ∂ denote the image of T 2

∂ in H1(Bn[4];Q). We first express τ∂ as a linear
combination of elements Tτij as in the statement of Proposition 6.1. Then we introduce the
squared lantern relation and use it to prove the proposition.

Lemma 6.2. For all n ≥ 2 we have

τ∂ = 2−(n2)(1 + T12) · · · (1 + Tn−1,n)
∑
i<j

τij .

In particular τ∂ lies in the span of the τij.

Proof. The steps of the proof are:

(1) Every Zn-invariant element of H1(Bn[4];Q) is a multiple of τ∂ .
(2) The following element of H1(Bn[4];Q) is Zn-invariant:

x = (1 + T12)(1 + T13) · · · (1 + Tn−1,n)
∑
i<j

τij .

(3) x = 2(n2)τ∂ .

For the first step let H1(Bn[4];Q)Zn and H1(Bn[4];Q)Zn denote the spaces of Zn-invariants
and Zn-coinvariants of H1(Bn[4];Q), respectively. Since Zn is finite there are isomorphisms

H1(Bn[4];Q)Zn ∼= H1(Bn[4];Q)Zn
∼= H1(Bn;Q) ∼= Q,

where the last isomorphism is induced by the signed word length homomorphism Bn → Z.
We conclude that, up to scale, there is a unique Zn-invariant element of H1(Bn[4];Q). The
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image of T 2
∂ under the signed word length homomorphism is 4

(
n
2

)
. This is because T∂ can be

written as a product of Tij where each Tij appears exactly once and because the signed word
length of each Tij is 2. Thus the image of τ∂ of in H1(Bn;Q) ∼= Q is equal to 4

(
n
2

)
6= 0, so

any Zn-invariant element of H1(Bn[4];Q) is a multiple of τ∂ .
We now proceed to the second step. Let σ ∈ Bn and let σ∗ be the induced permutation

of [n]2. We will use two facts. The first fact is that the action of σ on the image of {Tij} in
PZn is a permutation. The second fact is that στij is equal to Tτσ∗(ij) for some T ∈ PZn.

Both statements hold because σ · T kij is conjugate in PBn to T kσ∗(ij).

By the previous paragraph, the action of σ on the ij-term of x is given by

σ · (1 + T12) · · · (1 + Tn−1,n)τij = (1 + T12) · · · (1 + Tn−1,n)Tτσ∗(ij).

Here we have used the fact that Q[PZn] is commutative and so the permutation of {Tij}
induced by σ is irrelevant.

To complete the proof of the second step, it is then enough to show for T ∈ PZn that

(1 + T12) · · · (1 + Tn−1,n)T = (1 + T12) · · · (1 + Tn−1,n)

in Q[PZn]. If T = Tij , then this follows from the equality

(1 + Tij)Tij = Tij + T 2
ij = Tij + 1 = 1 + Tij

in Q[PZn] and the commutativity of the latter. If T is a product of more than one Tij then
we apply this equality inductively. This completes the proof of the second step.

We now proceed to the third step. As above, the image of τ∂ in H1(Bn;Q) ∼= Q is equal

to 4
(
n
2

)
. We similarly compute the image of x to be 4

(
n
2

)
2(n2). Thus x = 2(n2)τ∂ , as desired.

The lemma follows. �

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. We will use the theorem of Brendle and the second author that
Bn[4] is equal to the subgroup of PBn generated by squares of Dehn twists. Because of this
theorem it is enough to show that for any curve c the image of T 2

c in Bn[4] lies in the Q[PZn]-
submodule of H1(Bn[4];Q) generated by {τij}. We first prove this in the special case where
c is ck, the round circle in Dn surrounding the first k marked points.

Fix some k ≤ n. The standard inclusion Bk → Bn induces an inclusion f : Bk[4] →
Bn[4]. The latter further induces a map f∗ : H1(Bk[4];Q)→ H1(Bn[4];Q). The map f∗ sends
each τij in H1(Bk[4];Q) to τij in H1(Bn[4];Q).

By Lemma 6.2, the element τ∂ ∈ H1(Bk[4];Q) lies in the submodule of H1(Bk[4];Q)
generated by the τij . By the previous paragraph, it follows that f∗(τ∂) ∈ H1(Bn[4];Q) lies
in the submodule of H1(Bn[4];Q) generated by the τij . But since f(T 2

∂ ) = T 2
ck

we have that

f∗(τ∂) is the class of T 2
ck

, and so this completes the proof of the special case.
Let c be an arbitrary curve in Dn. Say that c surrounds k marked points of Dn. There

is a braid σ ∈ Bn with σ(ck) = c (this is a special case of the change of coordinates principle
[17, Section 1.3]). Thus the image of T 2

c in H1(Bn[4];Q) is obtained by applying the action
of σ to the image of Tck . But the Q[PZn]-submodule of H1(Bn[4];Q) generated by {τij} is
invariant under the action of Bn (as in the proof of Lemma 6.2, each στij is equal to Tτk` for
some k, ` and T ∈ PBn), so the proposition follows. �
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7. Basis and dimension

The goal of this section is to complete the proof of Theorem 2.1, which states that the
set S from Section 2 is a basis for H1(B4[4];Q).

Proposition 5.1 states that the subset S ′ of H1(Bn[4];Q) is linearly independent. The
cardinality of S ′ is

3

(
n

4

)
+ 3

(
n

3

)
+

(
n

2

)
.

Proposition 6.1 gives a spanning set T for H1(Bn[4];Q) that contains S ′. So our task in this
section is to show that the elements of T \ S ′ lie in the span of S ′. In fact, we will see that
the elements of T \ S ′ are all multiples of elements of S ′.

Before proving Theorem 2.1 we state and prove Lemma 7.1, which will allow us to
eliminate many of the elements from the spanning set T for H1(Bn[4];Q) given in Propo-
sition 6.1. Next we state and prove Lemma 7.2, which gives an expression for the class of
[Tij , Tjk] in H1(Bn[4];Q) in terms of the τij . We then state and prove Lemma 7.3, a pair of
algebraic identities used to prove the subsequent Lemma 7.4, which gives certain equalities
between elements of T . We then finally proceed to the proof of the theorem.

Lemma 7.1. Let n ≥ 2. The following statements hold in H1(Bn[4];Q).

(1) For i < j < k we have

Tikτij = Tjkτij , Tijτik = Tjkτik, and Tijτjk = Tikτjk.

(2) For pairwise distinct i, j, k, ` we have

Tijτk` = τk`.

Proof. We begin with the first statement. For i < j < k, we have the following standard
Artin relations in PBn:

[TikTjk, Tij ] = [TjkTij , Tik] = [TijTik, Tjk] = 1.

This implies that for i < j < k we have

[TikTjk, T
2
ij ] = [TjkTij , T

2
ik] = [TijTik, T

2
jk] = 1.

These relations are also expressible as

(TikTjk) · T 2
ij = T 2

ij (TijTjk) · T 2
ik = T 2

ik (TijTik) · T 2
jk = T 2

jk.

Since an element of PBn and its inverse have the same action on H1(Bn[4];Q) the above
relations take the following form in H1(Bn[4];Q):

Tikτij = Tjkτij Tijτik = Tjkτik Tijτjk = Tikτjk.

This completes the proof of the first statement.
We now proceed to the second statement. Let i, j, k, and ` be distinct. Let us also

assume that i < j and k < `. There are six possible configurations for {i, j, k, `}, two of
which are linked and four of which are unlinked (see Section 3.3 for the definition of linked).
In the unlinked cases the result follows from the fact that Dehn twists about disjoint curves
commute. Thus it remains only to consider the linked cases i < k < j < ` and k < i < ` < j.
The two cases are essentially the same, so we deal only with the first.

If i < k < j < ` then in PBn we have the standard Artin relation (Tj`TijT
−1
j` )·Tk` = Tk`

which (as above) gives the relation

(Tj`TijT
−1
j` ) · T 2

k` = T 2
k`.
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In H1(Bn[4];Q) this takes the form Tijτk` = τk`, as desired. �

In the next lemma we use T̄ to denote the image of T ∈ Bn[4] in H1(Bn[4];Q).

Lemma 7.2. For n ≥ 3 and i < j < k, the following holds in H1(Bn[4];Q):

[Tij , Tjk] =
1

2
((1− Tik)τij + (1− Tij)τik − (1− Tij)τjk) .

Proof. We first prove the lemma for the n = 3 case and then use this to obtain the general
case.

Brendle and the second author proved a relation in B3[4] called the squared lantern
relation [8, Proposition 4.2]. In terms of the Artin generators for PBn this relation can be
written as

[T12, T12 · T13] = T 2
12T

2
23T

2
13T
−2
∂

Conjugating both sides by T−112 and using the fact that T∂ is central yields the relation

[T12, T13] = T 2
12

(
T−112 · T

2
23

) (
T−112 · T

2
13

)
T−2∂

(this commutator is conjugate to the one in the statement). Thus the following identity holds
in H1(B3[4];Q):

[T12, T13] = τ12 + T12τ13 + T12τ23 − τ∂ .
Next we claim that

τ∂ =
1

2
((1 + T13)τ12 + (1 + T12)τ23 + (1 + T12)τ13).

By Lemma 6.2 we have that

τ∂ =
1

8
(1 + T12)(1 + T13)(1 + T23)(τ12 + τ13 + τ23).

Lemma 7.1 implies that T12τ23 = T13τ23 and therefore that

(1 + T12)(1 + T13)(1 + T23)τ23 = 2(1 + T12)
2τ23 = 4(1 + T12)τ23.

Similar calculations show that

(1 + T12)(1 + T13)(1 + T23)τ12 = 4(1 + T13)τ12

and

(1 + T12)(1 + T13)(1 + T23)τ13 = 4(1 + T12)τ13.

We therefore have that

τ∂ =
1

8
(4(1 + T13)τ12 + 4(1 + T12)τ13 + (1 + T12)τ23)

=
1

2
((1 + T13)τ12 + (1 + T12)τ23 + (1 + T12)τ13),

whence the claim.
Combining the claim and the above expression for [T12, T13] we obtain

[T12, T13] = τ12 + T12τ13 + T12τ23 −
1

2
((1 + T13)τ12 + (1 + T12)τ23 + (1 + T12)τ13)

=
1

2
((1− T13)τ12 − (1− T12)τ13 − (1− T12)τ23).
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If we apply the braid generator σ1 to the first and last expressions above we obtain

[T12, T23] =
1

2
((1− T23)τ12 − (1− T12)τ23 − (1− T12)T12τ13)

=
1

2
((1− T23)τ12 − (1− T12)τ23 + (1− T12)τ13)

=
1

2
((1− T13)τ12 − (1− T12)τ23 + (1− T12)τ13)

The second equality is obtained by multiplying the terms (1 − T12) and T12 and the third
equality is obtained from the equality (1− T23)τ12 = (1− T13)τ12 from Lemma 7.1.

For n ≥ 3 and i < j < k there exists an embedding f : D3 ↪→ Dn such that the images
of T12, T13, and T23 under the induced map f∗ : PB3 → PBn are Tij , Tik, and Tjk, respectively.

Applying f∗ to the expression for [T12, T23] in the n = 3 case yields the lemma. �

For a group G, the commutator subgroup [G,G] is a subgroup of G2, the subgroup of
G generated by squares of elements of G. For g ∈ G2 we denote by ḡ the image in H1(G

2;Q).
The group G acts G2 by conjugation. This induces an action of G on H1(G

2;Q), which

descends to an action of Ḡ = G/G2: for g ∈ G2 and h ∈ G we have hḡ = hgh−1.

Lemma 7.3. Let G be a group, and let x, y, z ∈ G. We have the following identities in
H1(G

2;Q), thought of as a Q[Ḡ]-module.

Witt–Hall: [x, yz] = [x, y] + y[x, z]

Jacobi: (1− x)[y, z]− (1− y)[x, z] + (1− z)[x, y] = 0

Proof. The Witt–Hall identity for groups is the equality

[x, yz] = [x, y]
(
y[x, z]y−1

)
in G, which can can checked by simply expanding both sides. Since [G,G] 6 G2 we obtain
from this the Witt–Hall identity in the statement.

We now proceed to the Jacobi identity. The strategy is to express [x, [y, z]] in two ways
and to set the resulting expressions equal to each other. On one hand, since

[x, [y, z]] = (x[y, z]x−1)[y, z]−1

we have

[x, [y, z]] = (x− 1)[y, z].

On the other hand, writing

[x, [y, z]] = [x, (yz)(zy)−1]

we obtain

[x, [y, z]] = [x, yz] + yz[x, (zy)−1]

= [x, y] + y[x, z] + yz[x, (zy)−1]

= [x, y] + y[x, z] + yz
(

(zy)−1[zy, x]
)

= [x, y] + y[x, z]− [x, zy]

= [x, y] + y[x, z]−
(

[x, z] + z[x, y]
)

= −(1− y)[x, z] + (1− z)[x, y],
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where the first, second, and fifth equalities use the Witt–Hall identity, the third equality uses
the relation [a, b−1] = b−1[b, a]b, and the fourth equality uses the fact that G2, hence [G,G]
acts trivially on H1(G

2;Q). The Jacobi identity follows. �

Lemma 7.4. For all p < q < r < s we have

(1− Tps)(1− Tqr)τpq = (1− Tps)(1− Tqr)τrs
(1− Tpq)(1− Trs)τpr = −(1− Tpq)(1− Trs)τqs
(1− Tpr)(1− Tqs)τps = (1− Tpr)(1− Tqs)τqr

Proof. We first prove the lemma in the case n = 4 and then use this to obtain the general
case. When n is 4, we have that p, q, r, and s are 1, 2, 3, and 4. Thus the statement of the
lemma reduces to the following three specific equalities:

(1− T14)(1− T23)τ12 = (1− T14)(1− T23)τ34
(1− T12)(1− T34)τ13 = −(1− T12)(1− T34)τ24
(1− T13)(1− T24)τ14 = (1− T13)(1− T24)τ23

We will prove the second equality using the Jacobi identity (Lemma 7.3) and then use
the Bn-action to derive the other two. Specifically, by inserting x = T12, y = T23, z = T34
into the Jacobi identity and using the fact that [T12, T34] = 1 in PB4, we obtain the following
equality in H1(Bn[4];Q):

(1− T12)[T23, T34] = −(1− T34)[T12, T23].
Applying Lemma 7.2 twice with (i, j, k) equal to (1, 2, 3) and (2, 3, 4), and inserting the results
into both sides of the above equation and simplifying, we obtain the second equality.

Acting on both sides of the second equality with σ2 and σ3, respectively, yields the first
and third equalities. This completes the proof of the lemma in the case n = 4.

We now address the general case. Let f : {1, 2, 3, 4} → {p, q, r, s} be the unique
increasing map. There is an embedding D4 → Dn so that the induced homomorphism B4 →
Bn maps Tij to Tf(i)f(j). It follows that the induced homomorphism on homology maps τij
to τf(i)f(j). The images of the equalities from the n = 4 case are the desired equalities. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. By Proposition 5.1 the set S is linearly independent. To prove the
theorem, we must show that S spans H1(Bn[4];Q). Since S has cardinality 3

(
n
4

)
+3
(
n
3

)
+
(
n
2

)
,

it suffices to show that there is some spanning set of this size.
The second statement of Proposition 6.1 states that H1(Bn[4];Q) is spanned as Q-vector

space by the set

T = {(1− T1) · · · (1− Tm)τij | m ≥ 0, T1, . . . , Tm ∈ {Tk`}}.
Let T0 = T . The goal is to successively eliminate elements of T0 until we obtain a set T3 with
exactly 3

(
n
4

)
+ 3
(
n
3

)
+
(
n
2

)
elements. The elements of T3 will in fact all be scalar multiples of

the elements of the set S ′ from Proposition 5.1.
We first claim that H1(Bn[4];Q) is spanned by the subset T1 of T0 containing all ele-

ments of the form ∏
k 6=i,j

(1− Tik)εk τij

where each εk lies in {0, 1}. Each element of T1 is an element of T0 where the corresponding
m is at most n− 2 (but not all such elements of T0 lie in T1).
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To prove the claim we consider an element

x = (1− T1) · · · (1− Tm)τij

of T0 and consider a single term (1 − Tp) of the product. Suppose that Tp is the Artin
generator Tk`. If x is non-zero then the product (1 − Tp)τij must be non-zero. By the
second statement of Lemma 7.1 the intersection of {k, `} with {i, j} must contain exactly one
element. Using the first statement of Lemma 7.1 we may assume without loss of generality
that the intersection is {i}. This leaves exactly n− 2 possibilities for {k, `}, namely, the sets
{i, `} with ` 6= i, j. We also have that (1 − Tp)2 = 2(1 − Tp) in Q[PZn], and so may further
assume that each term in the product appears at most once. The claim now follows.

We next claim that H1(Bn[4];Q) is spanned by the subset T2 of T1 consisting of elements
where there are only two or fewer factors of the form (1 − Tik). In other words, T2 consists
of elements of the following form

τij , (1− Tik1)τij , (1− Tik2)(1− Tik1)τij

where each k1 and k2 lies outside {i, j} and in each product k1 6= k2. To prove the claim, it
suffices to show that an element of T1 of the form

(1− Tik3)(1− Tik2)(1− Tik1)τij

lies in the span of T1, where k3 does not lie in {k1, k2}. Since the latter is equal to

(1− Tik2)(1− Tik1)τij − Tik3(1− Tik2)(1− Tik1)τij

and the first of these terms already lies in T2 it suffices to show that the second term

Tik3(1− Tik2)(1− Tik1)τij

lies in the span of T2. The basic strategy is to use Lemmas 7.1 and 7.4 to convert the latter
into an element of the form

±Tik3(1− T??)(1− T??)τk1k2 .

By Lemma 7.1 and the fact that i, k1, k2, and k3 are all distinct we have that Tik3τk1k2 = τk1k2 .
If both of the T?? terms are of the form Tk1? then the given element lies in T2 (up to sign).
If either of the T?? terms are of the form Tk2?, then we may apply Lemma 7.1 to replace it
with Tk1?, leading to the previous case. If either T?? term is not of the form Tk1? or Tk2?,
then the corresponding product (1 − T??)τk1k2 equals 0. In all cases, the given element lies
in the span of T2.

In order to convert Tik3(1− Tik2)(1− Tik1)τij into the desired form, we proceed in two
steps. The first step is to replace either Tik1 or Tik2 with a different Artin generator, so that
the result is one of the six types of elements listed in the statement of Lemma 7.4. Here is
how we do this. The disjoint sets {i, j} and {k1, k2} are either linked or unlinked. If they are
unlinked then we can replace Tik1 with Tjk1 by Lemma 7.1. If they are linked then we can
replace Tik2 with Tjk2 by the same lemma.

Since we have converted the given element Tik3(1 − Tik2)(1 − Tik1)τij into one of the
six forms in the statement of Lemma 7.4, we can apply the corresponding equality from
Lemma 7.4 and we obtain an element of the desired form. The claim is now proved.

Our final claim is that H1(Bn[4];Q) is spanned by the subset T3 of T2 consisting of all
of the τij , all of the terms of the elements of the form (1− Tik1)τij , and among the elements
of the form (1− Tik2)(1− Tik1)τij , only those that satisfy

i = min{i, j, k1, k2}.
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This claim follows from Lemma 7.4. Indeed, of the six types of elements in the statement of
that lemma, there are three types that do not satisfy the condition i = min{i, j, k1, k2}, and
in each case the element on the other side of the equality does satisfy the condition.

To complete the proof, it remains to check that the cardinality of T3 is 3
(
n
4

)
+3
(
n
3

)
+
(
n
2

)
.

The number of τij with i < j is
(
n
2

)
, the number of (1− Tik1)τij with i < j and k /∈ {i, j} is

3
(
n
3

)
, and the number of (1−Tik2)(1−Tik1)τij with i < j, with k1 < k2 and with k1, k2 /∈ {i, j}

is 3
(
n
4

)
. Adding these three terms together gives the desired result. �

8. Representation theory of Zn
In this section we prove Theorem 2.4, which states that the Vn(ρ, λ) are irreducible

representations of Zn and moreover that every irreducible representation of Zn is isomorphic
to exactly one Vn(ρ, λ).

In Section 8.1 we define the map ZIn → ZIm×Sn−m used in the definition of the Vn(ρ, λ)
and prove that it is surjective (Lemma 8.1). Then in Section 8.2 we give a complete criterion
for a representation of Zn to be irreducible (Proposition 8.3) and use this to show that the
Vn(ρ, λ) are irreducible. Finally in Section 8.3 we complete the proof of Theorem 2.4.

8.1. Projection maps. Our definition of the Vn(ρ, λ) was predicated on the existence of a
map ZIn → ZIm×Zn−m. In this section we prove Lemma 8.1, which gives such a map.

Let I be an element of Im and let n ≥ m. By the definition of Im the union of the
elements of I is [m]. As in Section 2, we may regard I as a subset of [n]2. There are forgetful
maps f1 : BI

n → BI
m and f2 : BI

n → Bn−m obtained by forgetting the last n−m strands and
the first m strands, respectively. Since the fi take squares of pure braids to squares of pure
braids, and since Bn[4] = PB2

n, there are induced maps

F1 : ZIn → ZIm and F2 : ZIn → Zn−m .

Let P the composition of F1×F2 with the natural surjection BI
m×Bn−m → BI

m×Sn−m. Let
Kn,m be the subgroup of PZn generated by the images of the Tij with j > m.

In the proof of the lemma, we will need the following isomorphism:

PBn
∼=
⊕
[n]2

Z/2.

This isomorphism follows from the description of the abelianization of PBn in Section 3.2
and the fact that Bn[4] is the kernel of the mod 2 abelianization of PBn.

Lemma 8.1. The map

P : ZIn → ZIm×Sn−m
is surjective with kernel Kn,m.

Proof. We first show that P is surjective. Let (g, σ) ∈ ZIm×Sn−m. Let ι : BI
m×Bn−m 6 Bn

be the natural inclusion, induced by disjoint embeddings Dm → Dn and Dn−m → Dn. Let σ̃
be a lift of σ to Bn−m. Then P ◦ ι(g, σ̃) = (g, σ). Thus P is surjective.

It remains to determine the kernel of P . First, we observe that Kn,m is contained in
the kernel. Since the stated generating set for Kn,m has

(
n
2

)
−
(
m
2

)
, elements, and since these

elements are part of the standard basis for PZn, it follows that Kn,m has cardinality 2(n2)−(m2 ).

Computing the cardinalities of Zn, ZIm, and Zn−m, we see that the kernel of P must have

cardinality 2(n2)−(m2 ). The result follows. �
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8.2. I-Isotypic representations and a criterion for irreducibility. We will give in this
section a characterization of the irreducible representations of Zn, Proposition 8.3 below. As
a consequence, we deduce in Corollary 8.4 that the Vn(ρ, λ) are irreducible.

Our characterization uses the notion of an I-isotypic representation, and so we begin
with this idea. It follows from the above description of PBn that

H1(PBn;µ2) ∼=
∏
[n]2

µ2,

and so elements of H1(PZn;µ2) are labeled by subsets of [n]2 (recall µ2 = {±1}). We may
identify H1(PZn;µ2) with Hom(PZn, µ2), and we denote the homomorphism corresponding
to I ⊆ [n]2 by ρI . We denote the corresponding 1-dimensional representation of PZn over C
by VI .

Let Γ be a subgroup of Zn that contains PZn; for instance Γ = ZIn for some I. Let
V be a representation of Γ over C and let I ⊆ [n]2. We will say that a subspace W of V is
I-isotypic if it is a PZn-submodule of V and there is a PZn-module isomorphism W ∼= V ⊕mI
for some m ≥ 1.

Lemma 8.2. Let Γ be a subgroup of Zn that contains PZn, and let V be a representation of
Γ over C. If W ⊂ V is I-isotypic, then for all σ ∈ Γ we have that σW is σ(I)-isotypic.

Proof. Let v ∈ W , let σ ∈ Γ, and let Tij denote the image of an Artin generator for PBn in
PZn. It suffices to show that Tij(σv) is equal to ρσ(I)(Tij) (σv). We indeed have:

Tij (σv) = σ
(
σ−1Tijσ

)
v = σTσ−1{i,j}v

= σρI(Tσ−1{i,j}) (v) = ρI(Tσ−1{i,j}) (σv) = ρσ(I)(Tij) (σv) ,

as desired. �

Proposition 8.3. Let W be a representation of Zn over C. Then W is irreducible if and
only if there exists an I ⊆ [n]2 and an irreducible, I-isotypic ZIn-submodule WI ⊂W so that
we have a Zn-module isomorphism

W ∼= IndZn

ZI
n
WI .

Proof. First assume W is irreducible. Let ResZn
PZn

W =
⊕

IWI be the decomposition into
isotypic subspaces. By Lemma 8.2 we have that gWI is g(I)-isotypic for each g ∈ Zn. Thus
gWI = Wg(I) and the Zn-action permutes the WI . Since W is irreducible, the induced action
on the set of indices I is transitive. Hence for any choice of I there is an isomorphism of
Zn-modules W ∼= IndZn

ZI
n
WI . Since W is irreducible, WI is an irreducible ZIn-module.

For the other direction, assume that W is a Zn-module of the form IndZn

ZI
n
WI for some

irreducible, I-isotypic ZIn-module WI . Let W ′ be the irreducible Zn-submodule of W that
contains WI . For any g ∈ Zn we have gWI ⊆ W ′. Since gWI is g(I)-isotypic (Lemma 8.2),
W ′ contains the direct sum

⊕
g∈Zn /ZI

n
gWI . This direct sum is isomorphic to the Zn-module

IndZn

ZI
n
WI , which we assumed to be isomorphic to W . Thus W ′ = W , as desired. �

Corollary 8.4. Each Zn-representation Vn(ρ, λ) is irreducible.

Proof. Fix some Vn(ρ, λ). From the definition there is an m ≤ n, a full subset I of [m]2, an
irreducible ZIm-representation Vm(ρ), and an irreducible Sn−m-representation V (λ) so that

Vn(ρ, λ) = IndZn

ZI
n

(Vm(ρ)� Vn−m(λ)) .
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Since we are working over an algebraically closed field of characteristic 0, and since Vm(ρ)
and Vn−m(λ) are irreducible, and since the action of ZIn on Vm(ρ)�Vn−m(λ) factors through
the surjective map P from Lemma 8.1, the tensor product Vm(ρ)�Vn−m(λ) is an irreducible
ZIn-representation. Since ρ is I-isotypic by assumption, and since the image of PZn under P
lies in ZIm 6 ZIm×Sn−m it follows that Vm(ρ)� Vn−m(λ) is I-isotypic. The corollary is thus
an immediate consequence of Proposition 8.3. �

8.3. Classification of representations. We are almost ready to prove Theorem 2.5, our
classification of irreducible representations of Zn. What remains is to distinguish between
different representations of the form Vn(ρ, λ). The following technical lemma provides the
required tools for this.

Lemma 8.5. Let n ≥ 2 and let I, J ⊆ [n]2.

(1) Let U be an I-isotypic ZIn module. There is a J-isotypic ZJn-module W with

IndZn

ZI
n
U ∼= IndZn

ZJ
n
W if and only if I and J lie in the same Zn-orbit.

(2) If U,W are irreducible I-isotypic ZIn-modules, IndZn

ZI
n
U ∼= IndZn

ZI
n
W if and only if U ∼= W .

Proof. We begin with the first statement. For the reverse implication, we first observe that
if I and J lie in the same Zn-orbit, which is to say that they lie in the same Sn-orbit, then
BI
n and BJ

n are conjugate in Bn. It follows that ZIn and ZJn are conjugate in Zn. The desired
conclusion is then given by the first part of the first exercise in Section III.5 of Brown’s
book [9].

For the forward implication, suppose that IndZn

ZI
n
U ∼= IndZn

ZJ
n
W . Since U and W are

I- and J-isotypic, respectively, it follows that ResZn
PZn

IndZn

ZI
n
U and ResZn

PZn
IndZn

ZJ
n
W are each

direct sums of copies of representations of the form Vg(I) and Vg(J) for g ∈ Zn (possibly with
multiplicities), respectively. We conclude that there is a g so that Vg(I) is isomorphic to VJ
as PZn-modules. But this implies that g(I) = J , as desired.

We proceed to the second statement. The reverse implication is trivial. For the forward
implication suppose that U and W are non-isomorphic I-isotypic irreducible ZIn-modules. It
suffices to prove that

HomZn

(
IndZn

ZI
n
U, IndZn

ZI
n
W
)

= 0.

By Frobenius reciprocity we have an isomorphism

HomZn

(
IndZn

ZI
n
U, IndZn

ZI
n
W
)
∼= HomZI

n

(
U,ResZn

ZI
n

IndZn

ZI
n
W
)
.

Let E ⊂ Zn be a set of representatives for the set of double cosets ZIn \Zn /ZIn. Using the

formula gZIn g−1 = Zg(I)n for g ∈ Zn we have an isomorphism of ZIn-modules

ResZn

ZI
n

IndZn

ZI
n
W =

⊕
g∈E

Ind
ZI

n

ZI
n ∩Z

g(I)
n

ResZ
g(I)
n

ZI
n ∩Z

g(I)
n

gW

(see [9, p.69 Proposition 5.6(b)]), and so

HomZI
n

(
U,ResZn

ZI
n

IndZn

ZI
n
W
)
∼=
⊕
g∈E

HomZI
n

(
U, Ind

ZI
n

ZI
n ∩Z

g(I)
n

ResZ
g(I)
n

ZI
n ∩Z

g(I)
n

gW

)
.

Applying Frobenius reciprocity once more, we see that the right-hand side is isomorphic to⊕
g∈E

HomZI
n ∩Z

g(I)
n

(
Res

ZI
n

ZI
n ∩Z

g(I)
n

U,ResZ
g(I)
n

ZI
n ∩Z

g(I)
n

gW

)
.
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Since any ZIn ∩Z
g(I)
n -module map between U and gW restricts to a PZn-module map, the

fact that U is I-isotypic and gW is g(I)-isotypic implies that there can be no non-trivial

ZIn ∩Z
g(I)
n -module maps between them unless g(I) = I. Since g ranges over a set of represen-

tatives for the set of double cosets ZIn \Zn /ZIn, the only g for which this condition is satisfied
is g = id. Thus the only nontrivial summand in the above direct sum is HomZI

n
(U,W ), which

vanishes by Schur’s lemma, because U andW are non-isomorphic irreducible ZIn-modules. �

We are finally ready to prove Theorem 2.4, which states that every Vn(ρ, λ) is an
irreducible Zn-representation and conversely that every irreducible Zn-representation is iso-
morphic to exactly one Vn(ρ, λ).

Proof of Theorem 2.4. Corollary 8.4 already gives that the Vn(ρ, λ) are irreducible. Let V be
an arbitrary irreducible Zn-representation. We would like to show that V is isomorphic to
some Vn(ρ, λ) as a Zn-module. By Proposition 8.3, there is an I ⊆ [n]2 and an irreducible I-

isotypic ZIn-representation WI such that V = IndZn

ZI
n
WI . By the first statement of Lemma 8.5

we may assume that the union of the elements of I is [m] for some m. Let Kn,m be the kernel

of the map P , as in Lemma 8.1. Since the generators for Kn,m act trivially on WI , the ZIn-

action on WI descends to an action of the quotient ZIm×Sn−m. Since WI is an irreducible
representation of ZIn, it is an irreducible representation of the quotient ZIm×Sn−m. Since we
are working over an algebraically closed field of characteristic 0 an irreducible representation
of a direct product of groups decomposes as an external tensor product of irreducible repre-
sentations of the two factors [31]. In particular, there are irreducible representations U1 and
U2 of BI

m and Sn−m such that WI
∼= U1 � U2 as ZIm×Sn−m-modules. Since WI is I-isotypic

and since PZn acts trivially on U2 it follows that U1 is I-isotypic.
To complete the proof of the theorem, it remains to prove the uniqueness statement.

Suppose that Vn(ρ, λ) and Vn(ρ′, λ′) are isomorphic as Zn-modules. By the second state-
ment of Lemma 8.5, the Zn-modules Vm(ρ)� Vn−m(λ) and Vm′(ρ

′)� Vn−m′(λ′) from which
Vn(ρ, λ) and Vn(ρ′, λ′) are induced must be isomorphic. It follows from the first statement
of Lemma 8.5 that m = m′. Since the tensor products are isomorphic, it follows that the
individual factors are as well (as we are working over C). �

8.4. A non-splitting. The following proposition ties up a loose end from Section 2.

Proposition 8.6. The following extension is not split:

1→ PZn → Zn → Sn → 1.

Proof. The surjection Zn → Sn induces a surjection

H1(B̄n;Z)→ H1(Sn;Z) ∼= Z/2

We claim that H1(B̄n;Z) ∼= Z/4. Since there is no split surjection Z/4→ Z/2, the proposition
follows from this.

Since Zn is the quotient of Bn by Bn[4] there is an exact sequence

H1(Bn[4];Z)→ H1(Bn;Z)→ H1(Zn;Z)→ 0.

We have H1(Bn;Z) ∼= Z. The image of H1(PBn;Z) in H1(Bn;Z) is 2Z, since each Artin
generator evaluates to 2 under the length homomorphism on Bn. Since Bn[4] is PB2

n the
image of H1(Bn[4];Z) in H1(Bn;Z) is 4Z. The claim follows. �
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9. Representation stability

In this section we prove Theorem 2.5, which gives the decomposition of H1(Bn[4];C)
into irreducible Zn-representations, and also states that the H1(Bn[4];C) satisfy uniform
representation stability.

In Section 9.1, we define the representations V3(ρ3) and V4(ρ4) of B̄
I3
3 and B̄

I4
4 that

are used in the representations Vn(ρ3, 0) and Vn(ρ4, 0) from the statement of Theorem 2.5.
Then we prove the isomorphisms from Theorem 2.5 in Section 9.2 by exhibiting the given
Vn(ρ, λ) as Zn-submodules of H1(Bn[4];C). These submodules are the spans of the orbits of
the elements

x3 = (1− T13)
∏

4≤j≤n
(1 + T1j)(1 + T2j)τ12 x4 = (1− T14)(1− T23)τ12.

(note that x3 is only defined for n ≥ 3 and x4 only for n ≥ 4). Finally, in Section 9.3 we
complete the proof of Theorem 2.5 by showing that H1(Bn[4];C) satisfies the definition of
uniform representation stability.

In this section we denote the span of x ∈ H1(Bn[4];C) by 〈x〉.

9.1. Representations of Zn. The representations V3(ρ3) and V4(ρ4) of ZI3n and ZI4n will

both be 1-dimensional representations obtained from homomorphisms ρk : ZIkk → µ2. We

first define maps ωk : BIk
n → Z (Lemma 9.1) and then obtain the ρk from the mod 2 reductions

of the ωk.
In order to define the ωk we take a different point of view on braids, as follows. Let

Cn(R2) be the space of configurations of n distinct, indistinguishable points in R2. Choose
a base point for Cn(R2) where the n points lie on a horizontal line. There is a natural
isomorphism π1(Cn(R2)) ∼= Bn. We label the points in the base point of Cn(R2) by [n]
from left to right. A loop in Cn(R2) induces a permutation of [n], and this is the usual
homomorphism Bn → Sn. If we represent a braid by a loop in Cn(R2), then the ith strand
of this braid representative is the path traced out by the point labeled i (the terminology is
explained by considering a spacetime diagram of the loop). Let

ξij : Bn → 1
2Z

be the function that counts the total winding number of the ith strand with the jth strand.
This is well defined because of our choice of base point for Cn(R2).

With this in hand, we define a function ω3 : BI3
n → Z by the formula

ω3 = ξ13 + ξ23.

We similarly we define ω4 : BI4
n → Z by

ω4 = ξ13 + ξ14 + ξ23 + ξ24.

The subgroup BI3
n can alternatively be described as the subgroup of Bn preserving the subsets

{1, 2} and {3} of [n]. Similarly, BI4
n can be described as the subgroup preserving the pair of

sets {{1, 2}, {3, 4}}.
A priori the functions ω3 and ω4 are not well defined, since the natural codomain is 1

2Z
in both cases.

Lemma 9.1. For k ∈ {3, 4}, the function ωk is a well-defined homomorphism.

Proof. We begin by showing that ω3 and ω4 are well defined. For any braid in BI3
n , the 1st

and 2nd strands both start and end to the left of the 3rd strand. It follows that both ξ13 and
ξ23 map BI3

n to Z. Thus, ω3 is a well-defined function to Z.
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For any braid in BI4
n that preserves {1, 2} the numbers ξ13, ξ14, ξ23, and ξ24 are all

integers, similar to the ω3 case. Also, for any braid in BI4
n that interchanges {1, 2} and {3, 4},

none of ξ13, ξ14, ξ23, and ξ24 are integers, and so again ω4 is well defined.
To complete the proof it remains to show that ω3 and ω4 are homomorphisms. We

observe that BI3
n can alternatively be described as the subgroup of Bn preserving the subsets

{1, 2} and {3}. Similarly, BI4
n is the subgroup preserving the pair of sets {{1, 2}, {3, 4}}.

We begin with ω3. Let g ∈ BI3
n . We color the 1st and 2nd strands red and the 3rd

strand blue. Then ω3(g) is the sum of the winding numbers of red strands with blue strands.
If g and h are two elements of BI3

n then the colorings of the strands in R2 for g and h agree
with the coloring of gh (defined in the same way as the one for g). It follows that ω3 is a
homomorphism.

The case of ω4 is similar. In this case, given g ∈ BI4
n we color the 1st and 2nd strands

red and we color the 3rd and 4th strands blue. Then ω4(g) again is the sum of the winding
numbers of red strands with blue strands. Suppose now that h is another element of BI4

n . If
g preserves the set {1, 2} then we color the strands of h in the same way that we colored the
strands of g. Otherwise, if g interchanges {1, 2} and {3, 4} then we color h in the opposite
way: the 1st and 2nd strands are blue and the 3rd and 4th strands are red. For either
coloring of h, the number ω4(h) counts the sum of the winding numbers of red strands with
blue strands. The chosen colorings of g and h agree with the coloring on gh. It follows that
ω4 is a homomorphism. �

The homomorphisms ω3 and ω4 induce homomorphisms BI3
n → µ2 and BI4

n → µ2.
The pure braid group PBn, hence Bn[4], is contained in each BIk

n . Since Bn[4] is equal
to PB2

n the image of Bn[4] under each map is trivial. It follows that ω3 and ω4 induce

homomorphisms B̄
I3
n → µ2 and B̄

I4
n → µ2. Further restricting to n = 3 and n = 4 gives the

desired homomorphisms

ρ3 : B̄
I3
3 → µ2 and ρ4 : B̄

I4
4 → µ2.

These homomorphisms give rise to the representations V3(ρ3) and V4(ρ4) from Section 2.

Lemma 9.2. Let k ∈ {3, 4}. The representation Vk(ρk) is Ik-isotypic.

Proof. Since each ρk defines a 1-dimensional representation, it is enough to check that the
restriction of ρk to PZk is equal to ρIk . For any I the homomorphism ρI can be written as

ρI =
∑
{i,j}∈I

1

2
ξij mod 2.

The lemma now follows from this and the expressions of the ρIk in terms of the ξij . �

9.2. The irreducible decomposition. We are now in a position to prove the first part of
Theorem 2.5, which we state separately as Proposition 9.5 below. We require two lemmas.

In the statement of the first lemma, σ13 denotes the half-twist in Bn whose square is
T13. In terms of the standard generators for Bn, we can write σ13 as (σ3σ2)σ1(σ3σ2)

−1. Also,
when an element is not defined we simply drop it from the proposed generating sets (for

instance T14 is not an element of BI3
3 ).
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Lemma 9.3. For n ≥ 3 the group BI3
n is generated by the set

{T13, T14, T34, σ1} ∪ {σi | i ≥ 4}.

For n ≥ 4 the group BI4
n is generated by the set

{T23, T45, σ1, σ2σ−113 } ∪ {σi | i ≥ 5}.

Proof. We begin with the case of BI3
n . To simplify the exposition we assume n ≥ 4; the case

n = 3 is obtained by ignoring the elements T14 and T34. The stabilizer of I3 in Sn is the
image of S2 × S1 × Sn−3 under the standard inclusion. The σi in the proposed generating
set map to the standard generators for this subgroup. Thus it suffices to check that every
Artin generator Tij ∈ PBn lies in the group generated by the proposed generators. Using the
fact that T13, T14, and T34 lie in the generating set and inductively applying the formulas
σjTijσ

−1
j = Ti,j+1 and σ−1i Tijσi = Ti−1,j shows that each Tij is a product of the proposed

generators, as desired.
We now treat BI4

n . Again, to simplify the exposition we assume n ≥ 5; the case
n = 4 is obtained by ignoring the element T45. The stabilizer of I4 in Sn is isomorphic to
(S2 × S2 × Sn−4) o Z/2, where the Z/2 factor is any element of order 2 that interchanges
{1, 2} with {3, 4}. The element σ2σ

−1
13 maps to (14)(23), giving the Z/2 factor. The element

σ1 maps to the generator of the first S2 factor. Since the Z/2 factor interchanges the S2
factors, the generator for the other S2 factor also is in the image. The σi with i ≥ 5 map to
the standard generators for the Sn−4 factor. So again the lemma reduces to the problem of
exhibiting each Tij as a product of generators. This is achieved in the same way as in the
previous case. �

Lemma 9.4. Let k ∈ {3, 4} and let n ≥ k. The subspace 〈xk〉 of H1(Bn[4];C) is a ZIkn -module
isomorphic to Vk(ρk)� Vn−k(0).

Proof. We begin by observing that x3 and x4 are nonzero in H1(Bn[4];C). The element x4
is certainly nonzero, as it is one of the basis elements of H1(Bn[4];C) from Theorem 2.1. To
see that the element x3 is nonzero, we apply the forgetful map PBn → PB3 that forgets the
last n − 3 strands. Via this map, (1 + T1j) and (1 + T2j) both map to 2 in Q[PZ3], and
(1−T13)τ12 maps to (1−T13)τ12 in H1(B3[4];C). Since the latter is one of the basis elements
for H1(B3[4];C) from Theorem 2.1 it follows that the image of x3, hence x3 itself, is nonzero.

As in Section 2, the action of ZIkn on Vk(ρk)�Vn−k(0) factors through the surjection to

P : ZIkn → Z
Ik
k ×Sn−k from Lemma 8.1. Let P1 denote the composition of P with projection

to the first factor.
For each k, Lemma 9.3 gives a set of generators for BIk

n . We will show that the image
g of each generator in ZIkn preserves 〈xk〉 and moreover that gxk = ρk ◦ P1(g)xk. Since the
representation Vk(ρk)�Vn−k(0) is determined by ρk ◦P1 the lemma follows from this. In the
argument we refer to an element of BIk

n and its image in ZIkn by the same symbol.
We begin with the case k = 3. Again, to simplify the exposition, we assume n ≥ 4. For

T13 we have T13(1− T13) = −(1− T13) and so T13x3 = −x3 = ρ3 ◦ P1(T13)x3, as desired. For
T14 we have T14(1 + T14) = 1 + T14 and so again T14x3 = x3 = ρ3 ◦ P1(T14)x3. Next we have
T34τ12 = τ12 and so T34x3 = x3 = ρ3 ◦ P1(T34)x3.

For σ1 we use the following relations in Bn: σ1T1jσ
−1
1 = T2j for j ≥ 3, σ1T2jσ

−1
1 =

T12T1jT
−1
12 for j ≥ 3, and σ1 commutes with T 2

12. Since PZn is abelian we have T12T1jT
−1
12 =
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T1j in ZI3n . Using these facts and Lemma 7.1 in turn we obtain that

σ1 · (1− T13)
∏

4≤j≤n
(1 + T1j)(1 + T2j)τ12 = (1− T23)

∏
4≤j≤n

(1 + T1j)(1 + T2j)τ12

= (1− T13)
∏

4≤j≤n
(1 + T1j)(1 + T2j)τ12,

which is to say that σ1x3 = x3 = ρ3 ◦ P1(σ3)x3.
Finally we must deal with the σj with j ≥ 4. As elements of Bn, each of these commutes

with T 2
12 and T13. Similarly, for i ∈ {1, 2} and k /∈ {1, 2, j − 1, j} we have that σj commutes

with Tij . Also, for i ∈ {1, 2} we have that σjTijσ
−1
j = Ti,j+1 and σjTi,j+1σ

−1
j = Tj,j+1TijT

−1
j,j+1

in Bn. As before we have the the latter is equal to Tij in ZI3n . We deduce that σjx3 = x3 =
ρ3 ◦ P1(σj)x3 for j ≥ 4.

We now treat the case k = 4. To simplify the exposition, we assume n ≥ 5. For
T45, we have that T45τ12 = τ12 and so T45x4 = x4 = ρ4 ◦ P1(T45)x4. For T23 we have
T23(1−T23) = −(1−T23) and so T23x4 = −x4 = ρ4 ◦P1(T23)x4. Since σi commutes with T14,
T23, and T 2

12 for i ≥ 5 we also have σix4 = x4 = ρ4 ◦ P1(σi)x4 for i ≥ 5. Using the relations

σ1T14σ
−1
1 = T24 and σ1T

2
23σ
−1
1 = T12T

2
13T
−1
12 in Bn we have

σ1 · (1− T14)(1− T23)τ12 = (1− T24)(1− T13)τ12 = (1− T14)(1− T23)τ12

and so σ1x4 = x4 = ρ4 ◦ P1(σ1)x4. Finally, we will show that σ2σ
−1
13 x4 = x4 = ρ4 ◦

P1(σ2σ
−1
13 )x4. The braid σ2σ

−1
13 commutes with T14 and T23, and (σ2σ

−1
13 )T 2

12(σ2σ
−1
13 )−1 = T 2

34

in Bn. Applying these facts and the first equality of Lemma 7.4 in turn we have:

σ2σ
−1
13 · (1− T14)(1− T23)τ12 = (1− T14)(1− T23)τ34 = (1− T14)(1− T23)τ12,

as desired. �

Proposition 9.5. There are Zn-equivariant isomorphisms

H1(Bn[4];C) ∼=


V2(1, (0)) n = 2

V3(1, (0))⊕ V3(1, (1))⊕ V3(ρ3, (0)) n = 3

Vn(1, (0))⊕ Vn(1, (1))⊕ Vn(1, (2))⊕ Vn(ρ3, (0))⊕ Vn(ρ4, (0)) n ≥ 4.

Proof of Proposition 9.5. As usual, to simplify the exposition, we assume n ≥ 4. The other
cases are obtained by ignoring the appropriate terms.

The first step is to show that we have the following isomorphisms of Zn-modules:

H1(Bn[4];C) ∼=


IndZ2

ZI2
2

C n = 2

IndZ3

ZI2
3

C⊕ IndZ3

ZI3
3

〈x3〉 n = 3

IndZn

ZI2
n

C⊕ IndZn

ZI3
n

〈x3〉 ⊕ IndZn

ZI4
n

〈x4〉 n ≥ 4,

where C is the trivial ZI22 module. The second step is to identify the summands of this
decomposition with the summands in the statement of the theorem.

We begin with the first step. The index of ZIkn in Bn is
(
n
2

)
, 3
(
n
3

)
, and 3

(
n
4

)
for k equal

to 2, 3, and 4, respectively. Thus the dimension of the purported decomposition equals the
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dimension of H1(Bn[4];C) as given in Theorem 2.1. Since representations of finite groups are
completely reducible in characteristic zero, it thus suffices to show that the representations

IndZn

ZI2
n

C, IndZn

ZI3
n

〈x3〉, and IndZn

ZI4
n

〈x4〉

appear as submodules of H1(Bn[4];C) and that they pairwise intersect in the zero vector. We
deal with each summand in turn.

We start with the first submodule IndZn

ZI2
n

C. For i < j we define

αij =
∏
r<s

(1 + Trs)τij .

The αij are linearly independent since αij is detected exactly by the forgetful map Bn[4] →
B2[4] that forgets all but the ith and jth marked points in Dn. Since gαij = αg(i)g(j) for all
g ∈ Zn it follows that H1(Bn[4];C) contains the Zn-module⊕

[g]∈Zn /Z
I2
n

g〈α12〉 = IndZn

ZI2
n

〈α12〉 = IndZn

ZI2
n

C,

as desired.
Next, we identify the submodules IndZn

ZIk
n

〈xk〉. Fix k ∈ {3, 4}. We consider the sub-

spaces g〈xk〉 of H1(Bn[4];C) for [g] ∈ Zn /ZIkn . Since 〈xk〉 is a ZIkn -module (Lemma 9.4),
these subspaces do not depend on the choice of g ∈ [g]. It follows from the fact that 〈xk〉 is
Ik-isotypic (Lemma 9.2) and Lemma 8.2 that the g〈xk〉 are mutually non-isomorphic, and so
H1(Bn[4];C) contains the direct sum. We may write this direct sum as⊕

[g]∈Zn /Z
Ik
n

g〈xk〉 = IndZn

ZIk
n

〈xk〉,

which is the desired submodule.
Since I2, I3, and I4 lie in different Zn-orbits, it follows from Lemma 8.2 that the three

summands we have found have trivial intersection pairwise. This completes the first step.
We now proceed to the second step. By Lemma 9.4, the second and third summands

from the first step agree with the summands Vn(ρ3, (0)) and Vn(ρ4, (0)) from the statement
of the proposition. It therefore remains to show that we have an isomorphism of Zn-modules

IndZn

ZI2
n

C ∼= Vn(1, (0))⊕ Vn(1, (1))⊕ Vn(1, (2)).

Any representation of Zn where PZn acts trivially can be naturally identified with a repre-
sentation of Sn. Applying this identification to the right-hand side of the above isomorphism
yields the Sn-representation Vn(0)⊕Vn(1)⊕Vn(2). Recall that on the left-hand side C is the
trivial ZI2n -representation and so again PZn acts trivially. Applying the same identification

to the left-hand side yields the Sn-representation IndSn
S2×Sn−2

C. It follows from the branching

rule that the latter is isomorphic to Vn(0)⊕ Vn(1)⊕ Vn(2), as desired. �

9.3. Uniform representation stability. In this section we prove the second statement of
Theorem 2.5, namely, that the sequence {H1(Bn[4];Q)} of Zn-modules is uniformly repre-
sentation stable (Proposition 9.8 below).

Lemma 9.6. The standard embedding Bn → Bn+1 induces injective maps Bn[4] → Bn+1[4]
and Zn → Zn+1.
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Proof. As mentioned in Section 2, Brendle and the second author proved that the group Bn[4]
is equal to PB2

n. It follows that the image of Bn[4] under Bn → Bn+1 is contained in Bn+1[4].
Thus the standard embedding Bn → Bn+1 induces a well-defined maps Bn[4]→ Bn+1[4] and
Zn → Zn+1. The first map is injective since it is the restriction of an injective map. The
injectivity of the second map is equivalent to the statement that the preimage of Bn+1[4]
under Bn → Bn+1 is contained in Bn[4]. This follows from the fact that PB2

n, hence Bn[4],
is the kernel of the mod 2 abelianization of PBn and the fact that the following square
commutes, where the horizontal arrows are the mod 2 abelianizations, and the vertical maps
are the inclusions:

PBn+1
// (Z/2)(

n+1
2 )

PBn

OO

// (Z/2)(
n
2)

OO

This completes the proof. �

Lemma 9.7. For each k ≥ 0 and n ≥ 0, the vector spaces Hk(Bn[4];Q) form a consistent
sequence of Zn-representations with respect to the maps induced by the standard inclusions.

Proof. For each g ∈ Bn there is a commutative diagram of groups

Bn[4]

g

��

// Bn+1[4]

g

��
Bn[4] // Bn+1[4]

where g acts by conjugation. The lemma then follows by applying Hk to all four groups, and
using the fact that a group acts trivially on its homology groups. �

Proposition 9.8. The sequence {H1(Bn[4];Q)} of Zn-modules is uniformly representation
stable.

Proof. We check the three parts of the definition of uniform representation stability in turn.
The standard inclusion map Bn[4] → Bn+1[4] from Lemma 9.6 is a right inverse to the
surjective map Bn+1[4] → Bn[4] obtained by forgetting the last strand. It follows that the
induced maps ϕn : H1(Bn[4];C) → H1(Bn+1[4];C) are injective. It follows from the first
statement of Proposition 6.1 and the fact that every τij lies in the same Zn+1-orbit as τ12
that the Zn+1-span of ϕn(H1(Bn[4];C)) is equal to H1(Bn+1[4];C). Finally, the condition on
the multiplicities of the irreducible components follows immediately from Proposition 9.5. �

10. A non-generating set

In this short section we use Lemma 6.2 to prove Theorem 2.3, which states that if
BIn 6 G 6 Bn[4] then G is not generated by even powers of Dehn twists about curves
surrounding two points.

Proof of Theorem 2.3. Brendle and the second author proved that the standard forgetful
maps Bn[4] → B3[4] induce a surjection G → B3[4]; see [8, Corollary 4.4]. Under any such
forgetful map, an even power of a Dehn twist about a curve surrounding two marked points
either maps to the identity or to an even power of a Dehn twist about a curve surrounding
two marked points. Thus it suffices to prove the result for the case n = 3.
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By Lemma 6.2, we have in H1(B3[4];Q) that

τ∂ =
1

2
(τ12 + τ13 + τ23 + T13τ12 + T12τ13 + T12τ23) .

On the other hand, if T 2
∂ could be written as a product of even powers of Dehn twists about

curves surrounding two points, there would exist integers c1, . . . , c6 such that

τ∂ = c1τ12 + c2τ13 + c3τ23 + c4T13τ12 + c5T12τ13 + c6T12τ23

But this is impossible, since τ12, τ13, τ23, T13τ12, T12τ13, and T12τ23 are exactly the elements
of our basis S for H1(B3[4];Q) from Corollary 4.3. �

11. Albanese cohomology

In this section, we will prove Theorems 2.8, and 2.9, which state that H∗Alb(Bn[4];Q) is
a proper subalgebra of H∗(Bn[4];Q) for all n ≥ 15 and that H∗Alb(SModg[4];Q) is a proper
subalgebra of H∗(SModg[4];Q) for g ≥ 7, respectively. We conclude the section with the
proofs of Theorem 2.2 and Proposition 2.7. The former gives the Betti numbers of B3[4] and
B4[4], while the latter gives a new (large) lower bound on the top Betti number of Mod2[4].

11.1. Interpretations of the level 4 braid group à la Brendle–Margalit. In this
section, it will be advantageous to recast the group Bn[4] in two different ways. Specifically,
we will utilize the following two isomorphisms, which hold for g ≥ 1:

B2g+1[4] ∼= SModg[4]× Z
B2g+1[4] ∼= PMod2

0,2g+2×Z.
As in Section 4, PMod0,n denotes the pure mapping class group of a sphere with n marked

points and PMod2
0,n is the subgroup generated by all squares.

Neither of the above isomorphisms are stated explicitly by Brendle and the second
author. However, both are easily obtained from their work, as we shall explain currently.

We begin with the first isomorphism. Brendle and the second author [7, Theorem 4.2]
proved the analogous isomorphism BI2g+1

∼= SIg × Z (their theorem actually refers to the
hyperelliptic Torelli group SI1g of a surface with boundary instead of BI2g+1, but as explained

in their introduction the groups SI1g and BI2g+1 are naturally isomorphic). The proof of
their isomorphism applies verbatim in our situation, except with the Torelli group replaced
with the level 4 mapping class group.

The second isomorphism follows from the theorem of Brendle and the second author
that B2g+1[4] ∼= PB2

2g+1 and the fact that PBn splits as a direct product as PMod0,n+1×Z;
see [17, p. 252].

We can also combine the above two isomorphisms in order to obtain the isomorphism

SModg[4] ∼= PMod2
0,2g+2

for g ≥ 1. Indeed, the group B2g+1[4] has infinite cyclic center, and so the composition of the
two isomorphisms above must identify the two given Z-factors.

In this section we will use one other fact from the work of Brendle and the second
author. They observed [8, Corollary 4.4] that each of the forgetful maps PBn → PBm

induces a surjective homomorphism

Bn[4]→ Bm[4].

(cf. the proof of Theorem 2.3). This map is split. For instance if the forgetful map PBn →
PBm is the one obtained by forgetting the last n−m marked points of Dn then the splitting
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is the restriction of the standard inclusion Bm → Bn. Both the surjectivity and the existence
of the splitting follow directly from the isomorphism B2g+1[4] ∼= PB2

2g+1.

11.2. The proofs of Theorems 2.8 and 2.9. Our next goal is to prove Theorems 2.8
and 2.9, which state that the Albanese cohomology algebras of Bn[4] and SModg[4] are
proper subalgebras of H∗(Bn[4];Q) and H∗(SModg[4];Q) for n ≥ 15 and g ≥ 7, respectively.
We give two lemmas that give the cohomological dimension and the Euler characteristic of
SModg[4] before proceeding to the proofs of Theorem 2.9 and 2.8 (in that order).

For a group G we denote by cdG its cohomological dimension.

Lemma 11.1. For n ≥ 3 we have

cd PMod2
0,n = n− 3

and for g ≥ 1 we have

cd SModg[4] = 2g − 1.

Proof. For n ≥ 3 we have cd PMod0,n = n − 3. The two statements now follow from the

fact that PMod2
0,n has finite index in PMod0,n and the isomorphism SModg[4] ∼= PMod2

0,2g+2

from Section 11.1, respectively. �

Lemma 11.2. For g ≥ 1 we have

χ(SModg[4]) = −2(2g+1
2 )−1(2g − 1)!

Proof. As explained in Section 11.1, the group SModg[4] is isomorphic to PMod2
0,2g+2. We

will compute the Euler characteristic of the latter.

We claim that the index of PMod2
0,n in PMod0,n is 2(n−1

2 )−1. Since for any group G we

have G/G2 ∼= H1(G;Z/2), it follows that

PMod0,n /PMod2
0,n
∼= H1(PMod0,n;Z/2) ∼= (Z/2)(

n−1
2 )−1

The last isomorphism follows from the splitting PBn−1 ∼= PMod0,n×Z and the usual descrip-
tion of the abelianization of PBn−1. The claim follows.

Harer and Zagier [23, p. 476] proved that

χ(PMod0,n) = (−1)n−3(n− 3)!

For any group G and a subgroup G′ of finite index we have χ(G′) = [G : G′]χ(G′). The
lemma follows by combining this fact with the claim. �

Proof of Theorem 2.9. By Lemma 11.1 we have cd SModg[4] = 2g − 1. Therefore, in order
to show that H∗Alb(Bn[4];Q) is a proper subalgebra of H∗(Bn[4];Q) we must show that the
image of the cup product map

ΛiH1(SModg[4];Q)→ H i(SModg[4];Q).

fails to be surjective for some 2 ≤ i ≤ 2g − 1.
Let bi denote the ith Betti number of SModg[4] and let di denote the dimension of the

image of the above cup product map. Our basic strategy is to show that there is some i
between 2 and 2g − 1 with bi > di. To do this we will estimate the di from above and the bi
from below.

We first claim that

di ≤
(

b1
2g − 1

)
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for all 2 ≤ i ≤ 2g − 1. As g ≥ 7 it follows from Corollary 2.6 that 2g − 1 < b1/2, and so

di ≤ dim ΛiH1(SModg[4];Q) =

(
b1
i

)
≤
(

b1
2g − 1

)
for i ≤ 2g − 1, as desired.

We next claim that

b2k−1 >
1

g − 1

(
2(2g+1

2 )−1(2g − 1)!− b1
)

for some k with 2 ≤ k ≤ g. Since (as above) the cohomological dimension of SModg[4] is
2g − 1 we have the following immediate consequence of Lemma 11.2:

b1 + b3 + · · ·+ b2g−1 > 2(2g+1
2 )−1(2g − 1)!

The claim follows.
Combining the two claims, it is now enough to show that

1

g − 1

(
2(2g+1

2 )−1(2g − 1)!− b1
)
>

(
b1

2g − 1

)
for g ≥ 7.

For g = 7 we can verify the inequality numerically. Direct computation shows that the
right-hand side is on the order of 1038 and that the left-hand side is on the order of 1040.

We now treat the general case g ≥ 8. We will perform four strengthenings of the desired
inequality in order to obtain an inequality that we can prove with basic calculus. First, using

the estimate
(
n
k

)
≤ nk/k! and the estimate (2g − 1)! >

(
2g−1
e

)2g−1√
2π(2g − 1) we obtain

the stronger inequality

1

g − 1

(
2(2g+1

2 )−1
(

2g − 1

e

)2g−1√
2π(2g − 1)− b1

)
>

b2g−11

(2g − 1)!

Next, adding b1/(g − 1) to both sides and using the fact that b1/(g − 1) < b1 ≤
(
b1

2g−1
)
, that(

n
k

)
≤ nk, and that b2g−11 < b2g1 , we obtain the even stronger inequality

2(2g+1
2 )−1

(
2g − 1

e

)4g−2
2π(2g − 1) > 2b2g1 .

It follows from Theorem 2.1 and the estimate
(
n
k

)
≤ nk/k! that b1 <

(2g+2)4

6 . Using this and
dividing both sides of the last inequality by 2 we obtain the even stronger inequality

2(2g+1
2 )−1

(
2g − 1

e

)4g−2
π(2g − 1) >

(
(2g + 2)4

6

)2g

.

Since both sides of the last inequality are positive, we may take the logarithms of both sides
in order to obtain the equivalent inequality(

2g2 + g − 1
)

ln 2+(4g − 2) (ln(2g − 1)− 1) + ln(2g − 1) + lnπ

> 8g ln(2g + 2)− 2g ln 6.

Set

G(x) =
(
2x2 + x− 1

)
ln 2 + (4x− 2) (ln(2x− 1)− 1) + ln(2x− 1) + lnπ

and

H(x) = 8x ln(2x+ 2)− 2x ln 6.
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The last inequality can be restated as G(g) > H(g). By direct computation, the function
F (x) = G(x)−H(x) satisfies F (8) > 0 and F ′(8) > 0. Furthermore, for x ≥ 8 we have that

F ′′(x) = 4 ln 2 +
8

2x− 1
− 8

x+ 1
− 4

(2x− 1)2
− 8

(x+ 1)2

> 4 ln 2 + 0− 8

9
− 4

225
− 8

81
> 0

where we have used the fact that x ≥ 8 in the first inequality. This implies that F ′(x)
is increasing for x ≥ 8, and therefore that F (x) is increasing for all x ≥ 8. The theorem
follows. �

Proof of Theorem 2.8. We will now derive Theorem 2.8 from Theorem 2.9. Because of the
isomorphism B2g+1[4] ∼= SModg[4]× Z there is a split surjective homomorphism B2g+1[4]→
SModg[4] induced by projection onto the first factor. Any section σ : SModg[4] → B2g+1[4]
induces a surjection

σ∗ : H∗(B2g+1[4];Q)→ H∗(SModg[4];Q)

Let σ∗(1) denote the algebra homomorphism

Λ∗H1(B2g+1[4];Q)→ Λ∗H1(SModg[4];Q)

induced by σ∗ in degree 1. This map is surjective.
The relationships between σ∗, σ∗(1), and the cup product are given by the following

commutative diagram:

Λ∗H1(B2g+1[4];Q)
σ∗g(1) //

^

��

Λ∗H1(SModg[4];Q)

^

��
H∗(B2g+1[4];Q)

σ∗g // H∗(SModg[4];Q).

We complete the proof of Theorem 2.8 by first dealing with the case of n odd, followed
by the case of n even.

By Theorem 2.9, the rightmost cup product in the above diagram fails to be sur-
jective for g ≥ 7. This implies that for all g ≥ 7 the cup product Λ∗H1(B2g+1[4];Q) →
H∗(B2g+1[4];Q) is not surjective. This proves Theorem 2.8 for n odd with n ≥ 15.

It remains to deal with the case of n even. Let B2g+2[4]→ B2g+1[4] be the map induced
by forgetting the last marked point of Dn and let s be any section, for instance the one
induced by the standard inclusion B2g+1 → B2g+2. Replacing B2g+1[4], SModg[4], and σ in
the diagram above with B2g+2[4], B2g+1[4], and s, respectively, and applying the odd n case of
Theorem 2.8, we obtain that for g ≥ 7 the cup product Λ∗H1(B2g+2[4];Q)→ H∗(B2g+2[4];Q)
is not surjective. This completes the proof. �

11.3. Higher Betti numbers. In this section we will prove Theorem 2.2, which gives the
Betti numbers of Bn[4] for n = 3, 4 and Proposition 2.7, which gives a lower bound for the
top Betti number of Mod2[4]. We begin with a lemma.

Lemma 11.3. For all n ≥ 1 we have cd Bn[4] = n− 1 and χ(Bn[4]) = 0.

Proof. For n ≥ 1 we have cd PBn = n−1; the lower bound comes from the existence of a free
abelian subgroup of rank n− 1 (generated by Dehn twists) and the upper bound comes from
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the decomposition of PBn into an (n− 1)-fold iterated semidirect product of free groups (via
combing). Since Bn[4] has finite index in PBn, the first statement follows.

It follows from Arnol’d’s computation [2, Corollary 2] of the Poincaré polynomial of PBn

that χ(PBn) = 0. Since Bn[4] has finite index in PBn, we obtain the second statement. �

Proof of Theorem 2.2. In the proof we will denote the ith Betti number of a group G by
bi(G) and we will abbreviate bi(Bn[4]) by bi.

We begin with the case of n = 3. By the second statement of Lemma 11.3 we have

χ(B3[4]) = b0 − b1 + b2 = 0.

By the n = 3 case of Theorem 2.1 we have b1(B3[4]) = 6. Since b0 = 1, we find that
b2(B3[4]) = 5. By the first statement of Lemma 11.3, we have found all of the nontrivial
Betti numbers of B3[4].

Next we treat the case n = 4. As in Section 11.1 we have B4[4] ∼= PMod2
0,5×Z. From

this the Künneth theorem gives

Hj(B4[4];Q) ∼= Hj(PMod2
0,5;Q)⊕Hj−1(PMod2

0,5;Q)

for all j ≥ 1. Thus for all j ≥ 1 we have

bj = bj(PMod2
0,5) + bj−1(PMod2

0,5).

It follows from Lemma 11.3 and the isomorphism B2g+1[4] ∼= PMod2
0,2g+2×Z (Section 11.1)

that cd PMod2
0,5 = 2. Thus by Lemma 11.2

64 = χ(PMod2
0,5) = 1− b1(PMod2

0,5) + b2(PMod2
0,5).

Since b1(PMod2
0,5) = 20, we obtain b2(PMod2

0,5) = 83. Thus

b2(B4[4]) = b2(PMod2
0,5) + b1(PMod2

0,5) = 83 + 20 = 103.

Finally, since χ(B4[4]) = 0 we have

b3(B4[4]) = 1− b1(B4[4]) + b2(B4[4]) = 1− 21 + 103 = 83.

Since cd B4[4] = 3, we have found all of the non-trivial Betti numbers of B4[4]. �

Proof of Proposition 2.7. Throughout we use the equality SMod2[4] = Mod2[4], which follows
immediately from the equality SMod2 = Mod2; see [17, Section 9.4.2].

By Lemma 11.2 we have χ(Mod2[4]) = −3072 and by Lemma 11.1 we have cd Mod2[4] =
3. Thus

1− b1 + b2 − b3 = −3072.

By Corollary 2.6 we have b1 = 54, whence b3 = 3019+b2. It remains to bound b2 from below.
Since B5[4] ∼= Mod2[4]× Z, the Künneth theorem gives

H2(Mod2[4];Q)⊕H1(Mod2[4];Q) ∼= H2(B5[4];Q)

and therefore that
b2 + b1 = dimH2(B5[4];Q)

Since the map B5[4] → B4[4] induced by forgetting the last marked point in D5 is split, the
induced map

H2(B5[4];Q)→ H2(B4[4];Q)

is surjective. By the n = 4 case of Theorem 2.2 we have

dimH2(B5[4];Q) ≥ dimH2(B4[4];Q) = 103

It follows that b2 ≥ 103− 54 = 49 and therefore that b3 ≥ 3019 + 49 = 3068. �
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12. Hyperelliptic Torelli groups

In this section prove Theorem 2.11, which states that

dimH1(SIg;Q) ≥ 1

6

(
20g4 + 12g3 − 5g2 + 9g − 6

)
.

After recalling some facts about the second Johnson homomorphism τ2, we proceed to the
proof of the theorem. At the end of the section we prove Proposition 2.12.

In this section, Spg(Z)[m] denotes the level m congruence subgroup of Spg(Z), that is,
the kernel of the mod m reduction map.

The second Johnson homomorphism. Let π = π1(Σg, ∗) and let π(k) denote the kth term of

the lower central series of π. We define Lk = π(k)/π(k+1) ⊗ Q. Let Kg denote the subgroup
of Ig generated by Dehn twists about separating simple closed curves. The second Johnson
homomorphism is a Modg-equivariant homomorphism

τ2 : Kg → Hom(L1,L3);

see the papers by Hain and Morita [21, 26] for the definition. The image of τ2 is a represen-
tation of Spg(Z). Work of Hain [19] implies that the image is isomorphic to the restriction
to Spg(Z) of the irreducible Spg(Q)-representation V (2λ2), where λ1, λ2, . . . , λg is a system
of fundamental weights for Spg(Q) (see also [26, p.377]).

The group SIg is contained in Kg; see of the paper by Brendle, Putman, and the second
author [6, p. 268]. Thus we may restrict τ2 to SIg to obtain

j : SIg → V (2λ2).

The group SIg is normal in SModg[2]. Also, A’Campo proved that the symplectic represen-
tation Modg → Spg(Z) induces an isomorphism SModg[2]/SIg ∼= Spg(Z)[2]. It follows that
j is SModg[2]-equivariant and that it induces an Spg(Z)[2]-equivariant map

j∗ : H1(SIg;Q)→ V (2λ2).

Proof of Theorem 2.11. Let i : SIg → SModg[4] denote the inclusion and consider the map

Φ : H1(SIg;Q)→ H1(SModg[4];Q)⊕ V (2λ2)

defined by

Φ(x) = (i∗(x), j∗(x)) .

By Corollary 2.6 the dimension of the first summand is

3

(
2g + 1

4

)
+ 3

(
2g + 1

3

)
+

(
2g + 1

2

)
− 1.

The dimension of the second summand is also known (see [21, Lemma 8.5]):

dimV (2λ2) =
g(g − 1)(4g2 + 4g − 3)

3
.

Since the sum of these two dimensions is the desired lower bound, it suffices to prove that Φ
is surjective. To do this, we will first show that i∗ and j∗ are surjective.

First we show that i∗ is surjective. It follows from the aforementioned theorem of
A’Campo that the map Modg → Spg(Z) induces an isomorphism SModg[4]/SIg ∼= Spg(Z)[4].
We therefore have an exact sequence

H1(SIg;Q)→ H1(SModg[4];Q)→ H1(Spg(Z)[4];Q)
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The homology group H1(Spg(Z)[m];Q) is zero for g ≥ 2 and m ≥ 0 (see [27, p. 3]). Thus i∗
is surjective.

We now show that the map j∗ is surjective for each g ≥ 2. By the Borel density theorem,
any lattice Γ ≤ Spg(R) is Zariski dense; see [27, p. 766]. It follows that the irreducible Spg(R)-
module V (2λ2)⊗ R is irreducible as a Γ-module. Since tensoring a reducible representation
with R results in a reducible representation, it follows that V (2λ2) is irreducible as a Γ-
module. As j∗ is Spg(Z)[2]-equivariant, it suffices to show that j∗ is non-zero.

Morita proved that if c is any (nontrivial) separating curve in Σg then τ2(Tc) is non-zero
[26, Proposition 1.1]. If c is any separating curve in Σg that is preserved by the hyperelliptic
involution s, then Tc lies in SIg. It follows that j is non-zero, and hence that that j∗ is
non-zero, hence surjective.

Finally, we show that Φ is surjective. Let (x, y) ∈ H1(SModg[4];Q)⊕ V (2λ2). We will
show that (x, y) lies in the image of Φ. Since both i∗ and j∗ are surjective, we can choose
x̃, ỹ ∈ H1(SIg;Q) such that

i∗(x̃) = x and j∗(ỹ) = y.

Let y1 = −j∗(x̃)+y. Since V (2λ2) is an irreducible Spg(Z)[4]-representation, the correspond-
ing space of coinvariants V (2λ2)Spg(Z)[4] is trivial. This is the same as saying that V (2λ2) is

spanned by {
(h− 1)vh | h ∈ Spg(Z)[4], vh ∈ H1(SIg;Q)

}
.

In particular, there is a finite set H ⊂ Spg(Z)[4] such that

y1 =
∑
h∈H

(h− 1)vh

where each vh lies in V (2λ2).
For each h ∈ H, let ṽh be an element of the j∗-preimage of vh. Let

ỹ1 =
∑
h∈H

(h− 1)ṽh.

By construction, we have that j∗(ỹ1) = y1 = −j∗(x̃) + y.
Since SIg is normal in SModg[4], and since SModg[4]/SIg ∼= Spg(Z)[4], the map i∗ is

Spg(Z)[4]-equivariant.Thus

i∗(ỹ1) =
∑
h∈H

(h− 1)i∗(ṽh) =
∑
h∈H

hi∗(ṽh)− i∗(ṽh).

Since SIg is contained in SModg[4] there is a well-defined action of the quotient Spg(Z)[4]
on H1(SModg[4];Q). But the action of SModg[4] on H1(SModg[4];Q) is trivial and so the
action of Spg(Z)[4] is trivial. Thus our last expression for i∗(ỹ1) is zero. It follows that
Φ(x̃+ ỹ1) = (x, y), as desired. �

We now prove Proposition 2.12, which states that for n odd the first homologyH1(BIn;Q)
is infinite dimensional if the sequence (dimH1(Bn[m];Q))∞m=1 unbounded.

Proof of Proposition 2.12. As in the statement, let n = 2g + 1 be odd. For each m we have
BI2g+1 ⊂ B2g+1[m]. Indeed, BI2g+1 is equal to the intersection of all B2g+1[m] with m ≥ 1.
It follows from the work of Brendle and the second author [8] that for g ≥ 1 there is an
isomorphism

B2g+1[2m]/BI2g+1
∼= Spg(Z)[2m].
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The fact that H1(Spg(Z)[2m];Q) = 0 for g ≥ 2 (see, for example, [28]) implies that there is
a surjection

H1(BI2g+1;Q)→ H1(B2g+1[2m];Q).

From this, it follows that if the sequence (dimH1(Bn[2m];Q))∞m=1 were unbounded then
H1(BI2g+1;Q) would be infinite dimensional. To complete the proof, it now suffices to observe
that the transfer homomorphism gives a surjection H1(B2g+1[2m];Q) → H1(B2g+1[m];Q).
So if the sequence (dimH1(Bn[m];Q))∞m=1 unbounded the sequence (dimH1(Bn[2m];Q))∞m=1
would be unbounded as well. �

13. 2-torsion on the characteristic varieties of the braid arrangement

The goal of this section is to prove Theorem 2.14. We first introduce a general branching
rule that gives the restriction of an irreducible Zn-representation of to PZn (Lemma 13.1). To
prove the theorem we apply the lemma to our description of H1(Bn[4];C) from Theorem 2.5
in order to explicitly compute all of the 2-torsion points that lie on the characteristic variety
of the braid arrangement.

Lemma 13.1. Let n ≥ 2. Assume that ρ is an irreducible I-isotypic representation of ZIm
for some full subset I ⊂ [m]2 where m ≤ n. Then we have an isomorphism of PZn-modules

ResZn

PBn
Vn(ρ, λ) ∼= (dimVm(ρ)) (dimV (λ))

⊕
g∈Zn /ZI

n

Vg(I)

Proof. By the definition of the Vn(ρ, λ), by the formula for the restriction of an induced
representation [9, Proposition 5.6(b)], and by the fact that PBn ⊂ ZJn for every J ⊂ [n]2, we
have

ResZn

PBn
Vn(ρ, λ) = ResZn

PBn
IndZn

ZI
n
Vm(ρ)� V (λ) ∼=

⊕
g∈Zn /ZI

n

ResZ
g(I)
n
PZn

gVm(ρ)� V (λ).

To complete the proof, we observe that Vn−m(λ) restricts to a direct sum of dimVn−m(λ)
copies of the trivial PZn-module and that Vm(ρ) restricts to the direct sum of dimVm(ρ)
copies of the representation VI . Thus Vm(ρ) � Vn−m(λ) restricts to the direct sum of
(dimVm(ρ)) (dimVn−m(λ)) copies of VI . Employing Lemma 8.2, we see that gVm(ρ) �
Vn−m(λ) restricts to the direct sum of (dimVm(ρ)) (dimVn−m(λ)) copies of Vg(I). The result
follows. �

Proof of Theorem 2.14. A 2-torsion point of Vd(Xn) is a homomorphism ρ : PBn → µ2 with
dimH1(Xn;Cρ) ≥ d. As in Section 8, any such ρ is equal to some ρI . For any I ⊂ [n]2, we
may identify the fiber of CρI with the PZn-module VI , viewed as a PBn-module. The fact
that PZn = PBn /Bn[4] is a finite group implies that the Hochschild–Serre spectral sequence

Ep,q2 = Hp(PZn;Hq(Bn[4];VI)) =⇒ Hp+q(PBn;VI)

degenerates at the E2 page. This gives isomorphisms

H1(Xn;CρI ) ∼= H1(PBn;VI) ∼=
(
H1(Bn[4];C)⊗ VI

)PZn
.

We conclude that dimH1(Xn;CρI ) is equal to the multiplicity of VI in H1(Bn[4];C) ∼=
H1(Bn[4];C), regarded as a PZn-module. Combining Theorem 2.5 with Lemma 13.1 we
see that

ResZn
PZn

H1(Bn[4];C) ∼=

C3 ⊕
(⊕

g∈Z3 /Z
I3
3
Vg(I3)

)
n = 3

C(n2) ⊕
(⊕

g∈Zn /Z
I3
n
Vg(I3) ⊕

⊕
g∈Zn /Z

I4
3
Vg(I4)

)
n ≥ 4
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Thus the multiplicity of any nontrivial VI in ResZn
PZn

H1(Bn[4];C) is at most 1. That is, for
d ≥ 2 there are no 2-torsion points on Vd(Xn). Further, this decomposition shows that the
2-torsion points on V1(Xn) are exactly those of the form ρg(I3) or ρg(I4) for g ∈ Sn. It remains

only to show that these points lie on V̌1(Xn).
Cohen–Suciu [14] found explicit equations for all of the components of V̌1(Xn). For

i < j < k there is a component

Vijk = {t ∈ (C×)(
n
2) : tijtiktjk = 1 and tpq = 1 if |{p, q} ∩ {i, j, k}| ≤ 1}

and for each 4-element set I = {i, j, k, `} with i < j < k < ` there is a component

Vijk` = {t ∈ (C×)(
n
2) : tpq = trs if {p, q} ∪ {r, s} = I, tpq = 1 if {p, q} 6⊂ I ,

∏
tpq = 1}.

We directly verify that the 2-torsion points of the form ρg(I3) lie in Vg(123) and those of the
form ρg(I4) lie in Vg(1234). This completes the proof of the theorem. �
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