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Abstract. We give a simple algorithm that determines whether a given post-critically finite
topological polynomial is Thurston equivalent to a polynomial. If it is, the algorithm produces
the Hubbard tree; otherwise, the algorithm produces the canonical obstruction. Our approach
is rooted in geometric group theory, using iteration on a simplicial complex of trees, and build-
ing on work of Nekrashevych. As one application of our methods, we resolve the polynomial
case of Pilgrim’s finite global attractor conjecture. We also give a new solution to Hubbard’s
twisted rabbit problem, and we state and solve several generalizations of Hubbard’s problem
where the number of post-critical points is arbitrarily large.

1. Introduction

In this paper we give an efficient, geometric, algorithmic solution to the following basic
decision problem about post-critically finite topological polynomials.

Topological polynomial decision problem. Given a post-critically finite topological polynomial,
determine whether or not it is Thurston equivalent to a polynomial. If it is, determine the
polynomial. If it is not, determine the canonical obstruction.

In the case where a given post-critically finite topological polynomial is Thurston equivalent
to a polynomial, the sense in which the algorithm determines the polynomial is as follows: the
output of our algorithm is the isotopy class of the corresponding Hubbard tree, relative to the
post-critical set. The Hubbard tree is a combinatorial invariant that completely determines
the corresponding polynomial; in the unicritical case the coefficients of the polynomial may be
computed from the Hubbard tree using the spider algorithm of Hubbard–Schleicher [17].

Our algorithm is based on our main theoretical result, Theorem 1.1. For each n we define a
simplicial complex Tn, whose vertices are homotopy classes of trees in the plane with n marked
points. For a post-critically finite topological polynomial f with n post-critical points, we
define a simplicial map λf : Tn → Tn, called the lifting map. Theorem 1.1 states that λf has a
nucleus that is contained in the 2-neighborhood of the Hubbard tree when f is unobstructed
and that is contained in the 1-neighborhood of the set of trees that are compatible with the
canonical obstruction when f is obstructed. The algorithm proceeds then by iteration of λf
on an arbitrary vertex of Tn. Our algorithm is inspired by related work of Nekrashevych [23];
see the discussion after the statement of Theorem 1.1.

In addition to solving the topological polynomial decision problem, we apply our methods
to address two of the guiding problems in the field. As a corollary of Theorem 1.1, we resolve
in the affirmative Pilgrim’s finite global attractor conjecture for the case of polynomials. As
a second application of our methods, we give a new, self-contained solution to Hubbard’s
twisted rabbit problem, which was originally solved by Bartholdi–Nekrashevych using iterated
monodromy groups. Then we state and solve a generalization of the twisted rabbit problem
where the number of post-critical points is arbitrarily large. Finally, we state and solve another
family of twisted polynomial problems where the number of post-critical points is arbitrarily
large and where obstructed maps arise in the answer.
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The remainder of the introduction is structured as follows. In Section 1.1 we give the relevant
background, state Theorem 1.1, give an overview of the proof, and give several examples of
nuclei. In Section 1.2 we explain in detail how Theorem 1.1 gives the iterative algorithm for
the topological polynomial decision problem. In Section 1.3 we discuss our applications to
the finite global attractor conjecture and to twisted polynomial problems. In Section 1.4 we
compare our work with prior results related to the topological polynomial decision problem.
We conclude by giving an outline of the body of the paper.

1.1. Statement of the main result. Before stating our main result, Theorem 1.1, we in-
troduce some background about topological polynomials. In particular we discuss two objects
that can be associated to a topological polynomial, one in the case when it is equivalent to a
polynomial and one in the case when it is not. These objects are called Hubbard trees and
canonical obstructions, respectively.

Topological polynomials. A topological polynomial is an orientation-preserving branched cover
f : R2 → R2 with degree greater than 1 and finitely many critical points. First examples of
topological polynomials are polynomials in one variable defined over C with degree greater
than 1. The post-critical set Pf of a topological polynomial f is the set of forward orbits of
the set of its critical points (critical points are not necessarily post-critical). We say that f is
post-critically finite if Pf is finite.

Two post-critically finite topological polynomials f and g are said to be Thurston equivalent
if there are orientation-preserving homeomorphisms φ0, φ1 : (R2, Pf ) → (R2, Pg) that are
isotopic (relative to Pf ) and make the following diagram commute:

(R2, Pf )

f
��

φ1
// (R2, Pg)

g

��

(R2, Pf )
φ0
// (R2, Pg)

Thurston rigidity states that two Thurston equivalent polynomials are conjugate by an affine
map [10], and so if a topological polynomial is Thurston equivalent to a polynomial, then this
polynomial is unique up to affine equivalence.

Hubbard trees. Every post-critically finite polynomial f has an associated Hubbard tree. Sev-
eral non-equivalent definitions of Hubbard trees appear in the literature. In this paper, the
Hubbard tree for a post-critically finite polynomial f is the subset of C given by the union
of all regulated arcs in the filled Julia set for f between pairs of points in the post-critical
set Pf . This tree is invariant in the sense that f(Hf ) ⊆ Hf . Such trees were first described by
Douady–Hubbard [8, 9].

If a topological polynomial f is equivalent to a polynomial, then it has an associated topo-
logical Hubbard tree that is invariant up to isotopy: given a Thurston equivalence from f to a
polynomial p, we may pull back the Hubbard tree for p to obtain the topological Hubbard tree
for f . A (topological) Hubbard tree, together with its preimage and the associated mapping of
trees, is a complete invariant for the Thurston equivalence class of an unobstructed topological
polynomial (see the Alexander method in Section 3.1).

Obstructions. A Levy cycle is a nonempty collection of disjoint essential simple closed curves
{c0, . . . , ck−1} in R2 \Pf so that for each i, at least one component c̃i−1 of the preimage f−1(ci)
is homotopic to ci−1 and so that the restriction c̃i−1 → ci of f is a degree 1 map, with indices
taken modulo k.
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A post-critically finite topological polynomial is equivalent to a polynomial if and only if
it does not have a Levy cycle; see Hubbard’s book [18, Theorem 10.3.8] and his paper with
Bielefeld and Fisher [3, Proposition 5.5]. This criterion is a specialization of a theorem of W.
Thurston [10, 37], which treats the more general case of a post-critically finite branched cover
of the sphere.

If a post-critically finite topological polynomial has a Levy cycle, then we say that the
topological polynomial is obstructed. Similarly, a topological polynomial is unobstructed if it
is equivalent to a polynomial.

An obstructed post-critically finite topological polynomial may have infinitely many different
Levy cycles. Pilgrim proved that an obstructed post-critically finite topological polynomial f
has associated to it a collection of curves called the canonical obstruction Γf , which is a
specific union of Levy cycles together with all (essential) iterated preimages of these cycles;
see Section 4 for more details.

Statement of the main theorem. In Section 2 we define for each n a locally finite simplicial
complex Tn. The vertices of Tn are isotopy classes of trees, and there is a natural metric on
the set of vertices given by the path metric in the 1-skeleton. For each topological polynomial
f with |Pf | = n we define a simplicial map

λf : Tn → Tn,

that we call the lifting map. The map λf : Tn → Tn is a combinatorial analogue of Thurston’s
pullback map on Teichmüller space; see Section 2.4 for a comparison.

For an unobstructed post-critically finite topological polynomial, the topological Hubbard
tree is a fixed vertex Hf for λf in Tn; we refer to Hf as the Hubbard vertex for f . In the
obstructed case, there is a subset of the set of vertices of Tn that we call the Levy set Lf ,
which encodes the canonical obstruction Γf ; specifically, Lf is the set of vertices of Tn with
the property that Γf is the boundary of a neighborhood of a subforest of the corresponding
tree.

We say that a subcomplex N of Tn is a nucleus for λf if for every vertex T of Tn, the sequence

of vertices λkf (T ) lies in N for all k sufficiently large. The following is our main theorem. It is
the theoretical underpinning of our algorithm to solve the decision problem stated above.

Theorem 1.1. Let f be a post-critically finite topological polynomial with |Pf | = n, and let
λf : Tn → Tn be the lifting map.

(1) If f is unobstructed, then the 2-neighborhood of Hf is a nucleus for λf .

(2) If f is obstructed, then the 1-neighborhood of Lf is a nucleus for λf .

In the case where f is unobstructed, Theorem 1.1(1) implies that λf has a finite nucleus.
Even more, there is a unique minimal nucleus, contained in the 2-neighborhood of Hf , con-
sisting of all vertices that are periodic under λf .

In 2014, Nekrashevych [23, Section 7.6] defined a polysimplicial complex D̃n that is closely
related to our simplicial complex Tn. He also defined for any topological polynomial with

n post-critical points an associated map Φ : D̃n → D̃n, which is analogous to our lifting
map λf . There is a straightforward argument to show that Φ is contracting in the case that
f is hyperbolic, hence giving a version of Theorem 1.1(1) for the special case when f is a
hyperbolic polynomial. Here, a topological polynomial is hyperbolic if every critical point is
attracted to a cycle containing a critical point; there are many topological polynomials that
are not hyperbolic, including all obstructed topological polynomials and, for example, the
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Figure 1. The minimal nuclei in T3 for R, A, and C

polynomial z2 + i discussed below. See the paragraph “Comparisons to prior works” below for
further discussion of Nekrashevych’s work.

Examples of nuclei: the rabbit, the co-rabbit, and the airplane polynomials. Up to Thurston
equivalence, there are exactly three quadratic polynomials where the critical point is periodic
with period 3. These polynomials are called the rabbit, co-rabbit, and airplane polynomials
(the names come from the shapes of their Julia sets); we denote them R(z), C(z), and A(z).
They are all of the form z2 +c, where c is a nonzero root of the quartic polymomial (c2 +c)2 +c
(this is exactly the condition that 0 is 3-periodic). The values of c for R, C, and A are
approximately −.12 + .74i, −.12− .74i, and −1.75, respectively.

The minimal nuclei for these three polynomials are shown in Figure 1; in the cases of the
rabbit and co-rabbit polynomials, the central vertex is invariant and the other three vertices
are cyclically permuted in the direction of the arrows under lifting.

By Theorem 1.1, we can verify the purported nuclei by inspecting the action of the lifting
map on the 2-neighborhood of the Hubbard vertex in each case. Figure 3 illustrates this action
in the case of the rabbit polynomial.

For the rabbit and co-rabbit polynomials, the minimal nucleus is equal to the 1-neighborhood
of the Hubbard vertex and for the airplane polynomial the nucleus is the Hubbard vertex itself;
in particular, in these cases the minimal nucleus is strictly smaller than the 2-neighborhood of
the Hubbard vertex. On the other hand, in Section 3.1 we give an example of a polynomial
f whose minimal nucleus is not contained in the 1-neighborhood of the Hubbard vertex. Our
proof of Theorem 1.1 can be refined to give more precise information about the size of the
minimal nucleus; see Section 4.5 for a discussion.

An example of a nucleus for an obstructed map: twisted z2 + i. We now give an example
of a nucleus for a certain obstructed topological polynomial that we will study in detail in
Section 5.3. Consider the polynomial I(z) = z2 + i. Its three post-critical points i, −1 + i, and
−i are shown inside each of the circles in Figure 2. Let a be the curve in (R2, PI) given by
the boundary of a neighborhood of the straight arc connecting −i to i (see also Figure 25 for

Figure 2. A segment of a nucleus in T3 for D−1
a I
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a picture of a). Then let Da be the left-handed Dehn twist about a. The composition D−1
a I is

a topological polynomial with the same post-critical set as I.
The map D−1

a I is obstructed; the curve b corresponding to the straight arc connecting −i
to −1 + i is a Levy cycle. In (R2, PI) the only multicurves are single curves, and so we further
deduce that b is the canonical obstruction. The Levy set LD−1

a I thus consists of all trees
compatible with b; these are exactly the trees shown in Figure 2. The subgraph of T3 spanned
by this Levy set is homeomorphic to R; it corresponds to a “horocycle” in Figure 6.

One nucleus for D−1
a I is exactly this Levy set LD−1

a I , and the action of λD−1
a I on this nucleus

is a translation by two “clicks” to the left. As in the case of the rabbit, co-rabbit, and airplane
polynomials, we can verify that this is a nucleus by considering the action of the lifting map
on the 1-neighborhood of the Levy set (since Db commutes with λD−1

a I , this reduces to a finite

check); see Section 4.5 for another argument.
To check that the action on the lifting map on the nucleus is the translation indicated in

Figure 2, we can use the description of the canonical form for D−1
a I, described at the end of

Section 5.3.

Overview of the proof. We give here a summary of the main ideas in the proof of Theorem 1.1.
Suppose first that f is unobstructed. Since Tn is locally finite, since λf is simplicial, and since
λf fixes Hf , it follows that every vertex of Tn is pre-periodic under λf . In other words, up
to passing to a power of f (which does not change Hf ), every vertex of Tn is mapped to an
invariant tree for f by some iterate λf . Poirier gives combinatorial conditions that determine
whether or not a tree is the Hubbard tree for a given polynomial [31]; we use a version of his
conditions to show that an invariant tree for f has distance at most 2 from Hf .

In order to prove our version of Poirier’s conditions, we introduce a tool called the Alexander
method (Proposition 3.1). Roughly the Alexander method states that a topological polynomial
f is completely determined by its action on any single tree in (R2, Pf ). It is a natural analogue
in the context of branched covers of the Alexander method from the theory of mapping class
groups [11, Proposition 2.8], which loosely states that a mapping class is determined by its
action on a finite set of curves.

In the case that f is obstructed, the proof of Theorem 1.1 follows a similar outline. One

new ingredient is that we consider an augmented complex of trees T̂n, so that λf has a fixed

vertex Hf , called the Hubbard vertex, as in the unobstructed case. The vertices of T̂n are

generalizations of trees called bubble trees, and T̂n contains Tn as a subcomplex. In order
to define the Hubbard vertex and to show that it is fixed by f , we apply Pilgrim’s theory of
canonical obstructions [28], and in particular Selinger’s topological characterization of canonical
obstructions [33].

One interpretation of Theorem 1.1 is that in both the obstructed and unobstructed cases, the

2-neighborhood of Hf contains a nucleus for the (analogous) lifting map λf : T̂n → T̂n. While
this version of our theorem unifies the two cases, it does not immediately give an algorithm,

since T̂n is not locally finite at the vertices of T̂n that do not lie in Tn.
We may think of the fact that λf is simplicial as a sort of contraction property. More

accurately, it is a non-expansion property: the distance between any two vertices may not
increase under a simplicial map. Our proof of Theorem 1.1 does not show directly that λf is
globally contracting; this only comes out as a consequence.

Figure 3 illustrates the contraction property for the rabbit polynomial. Here the 2-neighborhood
of the Hubbard vertex maps into the 1-neighborhood after 3 iterates of the lifting map. It fol-
lows that any vertex of distance d ≥ 2 from the Hubbard vertex gets mapped to another vertex
of distance at most d− 1 from the Hubbard vertex after 3 iterates. Therefore, upon iteration,
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Figure 3. The 2-neighborhood of the Hubbard vertex for the rabbit polynomial

every vertex of distance d ≥ 1 eventually reaches the 1-neighborhood, which is a nucleus in
this case.

1.2. The tree lifting algorithm. In this section we explain how to apply Theorem 1.1 to
give an algorithm for the topological polynomial decision problem. We call our algorithm the
tree lifting algorithm. We begin by explaining a simplified version of the algorithm, which
determines whether or not a topological polynomial is equivalent to a polynomial and outputs
either a topological Hubbard tree or a Levy cycle. Afterward, we explain how to modify the
algorithm so that it outputs either a topological Hubbard tree or the canonical obstruction.

Suppose we are given a post-critically finite topological polynomial f with |Pf | = n. The
steps of the simplified algorithm are as follows.

(1) Choose some vertex T of Tn.

(2) Check if any element of the 2-neighborhood of T is the topological Hubbard tree for f
by checking if it is invariant and if it satisfies Poirier’s conditions. If it is the topological
Hubbard tree, the algorithm outputs this tree and terminates.

(3) Check if any tree in the 1-neighborhood of T has a sub-tree whose boundary is a
curve of a Levy cycle. If so, the algorithm outputs that Levy cycle and the algorithm
terminates.

(4) Replace T with λf (T ) and return to Step 2.

Because of the local finiteness of Tn, Steps 2 and 3 are finite checks. By Theorem 1.1 the
algorithm terminates.

We now explain how to modify the algorithm so that it outputs the canonical obstruction in
the obstructed case. Any topological polynomial f has a Hubbard vertex Hf in the augmented

complex T̂n which is invariant under lifting, and we show in Proposition 4.7 how to generalize
Poirier’s conditions to give a recognition algorithm for Hf . When f is obstructed, the Hubbard
vertex Hf includes the canonical obstruction as part of its definition, and it lies in the 1-

neighborhood in T̂n of any vertex in the Levy set Lf . Thus we can use the following algorithm.

(1) Choose some vertex T of Tn.

(2) Check if any element of the restricted 2-neighborhood of T is the Hubbard vertex for f
by checking if it is invariant and if it satisfies the conditions of Proposition 4.7. If it is
the Hubbard vertex, the algorithm outputs the Hubbard tree or canonical obstruction
and terminates.
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(3) Replace T with λf (T ) and return to Step 2.

Here the restricted 2-neighborhood is the 1-neighborhood in T̂n of the 1-neighborhood of T in
Tn. This restricted 2-neighborhood is always finite, so step 2 is a finite check.

We emphasize that the tree lifting algorithm as stated is only one way to convert our
Theorem 1.1 into an algorithm; there are many improvements one could make by examining
the inner workings of the proof of Theorem 1.1. For example, in Section 4.5 we give two
successive refinements of Theorem 1.1 that result in improvements in the tree lifting algorithm.

1.3. Applications. We explain here two applications of our methods, namely, to Pilgrim’s
finite global attractor conjecture and to Hubbard’s twisted rabbit problem.

Application to the finite global attractor conjecture. As above, a topological polynomial is
obstructed if and only if it has a Levy cycle. More generally, Thurston proved that a post-
critically finite branched cover of the sphere is obstructed if and only if it has (what is now
called) a Thurston obstruction, a multicurve that is invariant under pullback (and also satisfies
an additional combinatorial property). It is therefore a fundamental problem to understand
the behavior of the set of multicurves under pullback. Pilgrim’s global attractor conjecture
addresses one of the most basic aspects of this problem.

Let f be a branched cover of the sphere with finite post-critical set P . Let Mf denote the
set of isotopy classes of multicurves in S2 \ P ; here a multicurve is a set of pairwise disjoint,
pairwise non-homotopic essential simple closed curves. Similar to the lifting map λf : Tn → Tn,
there is a lifting map λf : Mf → Mf (in the lift we discard inessential components and all
but one component from each parallel family). Pilgrim’s conjecture is that if f is (Thurston
equivalent to) a rational map and is not a flexible Lattès example, then λf : Mf →Mf has a
finite nucleus, that is, a finite subset to which all elements of Mf are attracted (Pilgrim refers
to a nucleus as a global attractor); this conjecture appeared in a lecture by Pilgrim [25], and
later in a paper by Lodge [20, Section 6].

Let f be a polynomial whose post-critical set P consists of n points. For a vertex T of Tn,
let M(T ) be the set of M ∈ Mf so that M is the boundary of a neighborhood of a subforest
of T . Let {T1, . . . , TN} be the vertices of any finite nucleus for f in Tn (it follows from
Theorem 1.1(1) that this finite set exists). For any vertex T we have λf (M(T )) ⊆ M(λf (T )).

Thus, for k large, the set M(λkf (T )) is contained in the union of the M(Ti). Each such M(Ti)
is finite, and moreover is algorithmically computable, via the tree lifting algorithm. We thus
have the following corollary of the first statement of Theorem 1.1, which resolves Pilgrim’s
conjecture in the case of polynomials.

Corollary 1.2. Let f be a post-critically finite polynomial. Then the lifting relation λf on
Mf has a finite nucleus. More specifically, the nucleus is contained in the union of the M(Ti),
which can be computed via the tree lifting algorithm.

Pilgrim has previously verified the finite global attractor conjecture in two cases: (1) where f
is a post-critically finite branched cover over the sphere whose associated virtual endomorphism
on mapping class groups is contracting [29, Theorem 1.4], and (2) where f is a quadratic poly-
nomial with periodic critical point [29, Corollary 7.2]. He and Lodge also verified the conjecture
for three specific quadratic polynomials [29, Theorems 1.6, 1.7, 1.8]. Additionally, Kelsey and
Lodge verified the conjecture for all quadratic non-Lattès maps with four post-critical points.
The work of Nekrashevych discussed after the statement of Theorem 1.1 implies the conjec-
ture for the case of hyperbolic polynomials. Finally, Hlushchanka proved the conjecture for
critically fixed rational maps [15].
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Applications to twisted polynomial problems. In the early 1980s, Hubbard posed the so-called
twisted rabbit problem, in part to emphasize how little was understood about the topological
polynomial decision problem. If we post-compose, say, the rabbit polynomial R with a home-
omorphism h of R2 fixing PR pointwise, we obtain a new topological polynomial hR with the
same dynamics on PR (throughout, we suppress the symbol for composition of a topological
polynomial with a homeomorphism). Such a topological polynomial cannot have a Levy cycle
(by the Berstein–Levy theorem [18]), and so hR is Thurston equivalent to R, C, or A. Let
Dx be the (left-handed) Dehn twist about the curve x in Figure 15 and let m ∈ Z. Hubbard’s
problem is: determine the Thurston equivalence class of Dm

x R as a function of m. In other
words, determine the corresponding function Z→ {R,C,A}.

In 2006, Bartholdi–Nekrashevych solved the twisted rabbit problem [2]. Their approach is to
associate an algebraic object, called an iterated monodromy group, to a topological polynomial,
and to show that this iterated monodromy group has a nucleus (similarly to how our lifting
maps have nuclei). The nucleus is a finite state automaton (in particular, it is a finite amount of
data) that completely describes the Thurston equivalence class of the topological polynomial.
The nucleus is computable, and so this method solves the recognition problem for topological
polynomials. In particular, it solves the twisted rabbit problem. They also give an explicit
formula in terms of m for whether Dm

x R is equivalent to R, C, or A (see Section 5). In their
paper, Bartholdi–Nekrashevych also apply their methods to several variations of the twisted
rabbit problem, by changing the original polynomial and/or the twisting homeomorphism. In
all of their examples, the size of the post-critical set is 3.

In Section 5.1 we apply our tree lifting algorithm to give a new solution to Hubbard’s
twisted rabbit problem. In place of iterated monodromy groups we use the Alexander method,
mentioned above.

In Section 5.2 we give a generalization of the twisted rabbit problem to the case where
there are n post-critical points. One feature of our method is that the generalization to n
post-critical points is readily apparent from the picture for the case n = 4.

Finally, in Sections 5.3 and 5.4 we consider twistings of the polynomial I(z) = z2 + i and of
certain generalizations In(z) that have n post-critical points. The critical point of each In(z)
has pre-period n− 2 and period 2. As such, the Berstein–Levy theorem does not apply, and in
fact there are obstructed twistings of In(z) for each n. Bartholdi–Nekrashevych already gave an
algorithm for determining the Thurston equivalence class of every twisting of I = I3 by a pure
mapping class [2, Section 6]. As they show, the result can be I, the polynomial Ī(z) = z2 − i,
or one of infinitely many distinct obstructed maps (which they completely catalog).

In order to describe the answers to the twisted z2 + i problem and its generalizations, we
introduce in Section 4.4 a normal form for obstructed topological polynomials that we call the
canonical form. The canonical form is analogous to the Nielsen–Thurston normal form in the
theory of mapping class groups. The canonical form is a complete topological description of a
given map into canonical pieces. In particular, it carries more information than the collection
of first-return maps. In the case of mapping class groups, the analogous “canonical form” is not
canonical (see the discussion in Section 5.3); and so the fact that the pieces here are canonical
is a novel feature.

1.4. Comparisons to prior works. There have been many works on the decision problem
for post-critically finite topological polynomials, and more generally, for post-critically finite
branched covers of the sphere.

As discussed after the statement of Theorem 1.1, Nekrashevych defined for a topological

polynomial f with n post-critical points a cell complex D̃n and a map Φ : D̃n → D̃n that is
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closely related to our tree lifting map. The points of D̃n are called metric cactus diagrams.
Nekrashevych mentions that Φ is contracting when f is hyperbolic [22, Proof of Theorem 7.2];
the details are omitted, but it is a straightforward argument [21]. As such, there is a finite

nucleus for f in D̃n, and so this gives an algorithm for the recognition of topological polynomials
in the special case of hyperbolic polynomials. This approach gives finer information than

Theorem 1.1 in that the contraction on D̃n is exponential. However, it is unclear if this
method can be extended to all topological polynomials.

Our work is also closely related to the work of Bartholdi–Nekrashevych described above [2].
One might hope that there is a way to translate between the minimal nuclei for our tree lifting
map and the nuclei for their iterated monodromy groups. A näıve guess would be that the
elements of the fundamental group appearing in their nuclei are the ones represented by loops
intersecting the topological Hubbard tree in at most one point. For the rabbit, co-rabbit, and
airplane polynomials, this is indeed the case, once we pass from π1(R2 \ P ) to π1(S2 \ P ) (by
adding a point at infinity). It would be interesting to know if this correspondence holds in
general.

Hubbard–Schleicher [17] describe the spider algorithm, which uses an iterated lifting proce-
dure on tuples of points in C, and isotopy classes of arcs from∞ to the these points, in order to
find the coefficients of a post-critically finite unicritical polynomial from a given combinatorial
description. This is complementary to our tree-lifting algorithm, which starts with a topo-
logical description of a map and obtains a combinatorial description. Given an unobstructed
post-critically finite unicritical topological polynomial, one can use our algorithm to determine
the combinatorics of the Hubbard tree for the polynomial in its Thurston class and then use
the spider algorithm to find the coefficients of this polynomial.

D. Thurston studies the case of post-critically finite branched covers of the sphere where each
cycle of post-critical points contains a critical point [36]. He gives a positive characterization
for such a map to be equivalent to a rational map. His criterion involves the existence of an
elastic graph that stretches under iteration of the corresponding lifting map. This result should
be viewed as complementary to W. Thurston’s theorem discussed earlier.

Bartholdi–Dudko [1] have written a series of papers that prove the decidability of the
Thurston equivalence of pairs of post-critically finite branched covers of the sphere. They
also give an algorithm to determine whether an unobstructed branched cover S2 → S2 is ratio-
nal. Bartholdi–Dudko describe branched coverings of the sphere in terms of group-theoretical
objects called bisets. The resulting algorithms have a symbolic nature. Also, they involve
floating point calculations as well as manipulations of triangulations on the sphere. Their
algorithms have been implemented in the software package Img within the computer algebra
system GAP.

Nekrashevych uses the theory of bisets to give a “combinatorial spider algorithm” that
classifies post-critically finite topological polynomials by their bisets [22]. This algorithm is,
however, not known to terminate.

Utilizing the work of Bartholdi–Dudko and Bartholdi–Nekrashevych, Kelsey–Lodge enumer-
ate the Thurston equivalence classes of branched covers of the sphere of degree 2 with at most
4 post-critical points [19].

Shepelevtseva–Timorin [35] define invariant spanning trees for quadratic rational maps as a
tool for classifying post-critically finite branched covers of the sphere of degree 2. As in our
paper, they have a scheme where they iteratively lift trees in order to search for an invariant
tree. Their process is similar to ours, but they do not prove that their process converges. One
of their results appears in Section 3 below. As in the work of Bartholdi–Dudko, their proofs
are phrased in terms bisets.
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Bonnot–Braverman–Yampolsky [4] prove that it is decidable whether or not a post-critically
finite branched cover of the sphere is equivalent to a rational map [4]. Like Bartholdi–Dudko,
they work directly with triangulations of the sphere. Their algorithm involves two parallel ex-
haustive searches, one searching for a Thurston obstruction, and one searching for an equivalent
rational map.

Building on the work of Bonnot–Braverman–Yampolsky, Selinger–Yampolsky give an al-
gorithm that finds the canonical obstruction for a post-critically finite branched cover of
the sphere [34]. Recent work of Rafi–Selinger–Yampolsky [32] pairs the improved algorithm
of Selinger–Yampolsky for detecting obstructions with an improved algorithm for detecting
Thurston equivalence of rational maps. The improvements are obtained by applying known
algorithms for the conjugacy problem in the mapping class group.

Cannon–Floyd–Parry–Pilgrim [5] focus attention on a special subset of post-critically finite
branched covers of the sphere they call nearly-Euclidean Thurston maps (NET maps). A NET
map is a post-critically finite branched cover of the sphere with exactly 4 post-critical points
and the property that each critical point has local degree 2. Floyd–Parry–Pilgrim proved that
rationality is decidable for NET maps [13]. They leverage the near-Euclidean behavior of the
maps to find an upper bound on the slope of an obstruction. In a separate paper, Floyd–
Parry–Pilgrim provide an algorithm for constructing dynamic portraits for NET maps and
they classify dynamic portraits of degree up to 30; see [12].

Our tree lifting algorithm has some important qualitative differences from the above works:

(1) It applies to all post-critically finite topological polynomials.

(2) It does not require an exhaustive search.

(3) It gives recognition of topological polynomials, not just comparison.

(4) It gives the conjugating map between two equivalent topological polynomials, not just
the fact that they are equivalent.

(5) It effectively computes a primary invariant, namely the Hubbard tree, rather than a
secondary invariant, such as a biset or an iterated monodromy group.

We suspect that our algorithm runs in polynomial time (possibly even quadratic time), and that
it can be implemented effectively. Our algorithm is no doubt more efficient than an algorithm
that simply lists and checks all possible isotopy classes of trees and all possible obstructions.

One shortcoming of our tree lifting algorithm is that it does not have an immediate extension
to the case of rational maps because it relies on the existence (and theory of) Hubbard trees.
However, there has been work on invariant trees for special classes of post-critically finite
branched covers of the sphere: by Shepelevtseva–Timorin for quadratic rational maps [35] and
by Hlushchanka for expanding rational maps [14]. Their work may provide a framework for
generalizing our tree lifting algorithm.

Finally, we have recently learned of work in preparation by Ishii–Smillie wherein they give an
algorithm for computing the homotopy class of the Hubbard tree for the class of post-critically
finite expanding polynomials in terms of iterated pullbacks of loops in the sphere.

Outline of the paper. We begin in Section 2 by introducing the tree complex Tn, the augmented

tree complex T̂n, and the associated lifting maps λf . We also prove there that Tn and T̂n are
contractible. In Sections 3 and 4 we prove the first and second statements of Theorem 1.1,
respectively. Finally, in Section 5 we explain how to use our tree lifting algorithm to solve
Hubbard’s original twisted rabbit problem, our generalization to the case of n post-critical
points (Theorem 5.3), and the generalized twisted z2 + i problem (Theorem 5.5).
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2. The complex of trees and the lifting map

The goal of this section is to introduce some of the main objects of study in this paper.
Specifically, we define

(1) the complex of trees Tn,
(2) the space of metric trees Yn,

(3) the augmented complex of trees T̂n, and

(4) the lifting maps λf : Tn → Tn and λf : T̂n → T̂n.

We accomplish these goals in four corresponding subsections below. The space Yn is introduced
mainly as an auxiliary object; it is used to prove that Tn is contractible (Proposition 2.2).
Specifically, we show that Yn is homeomorphic to Teichmüller space (Proposition 2.1), and we
show that Tn is a spine for Yn. Throughout this section, let P ⊆ R2 be a set with n elements;
we refer to P as a set of marked points in R2.

As mentioned in the introduction, the complex Tn is closely related to a poly-simplicial

complex D̃n defined by Nekrashevych [22, Section 7.6]. One point of distinction is that the

complex D̃n does not seem to be directly related to a subdivision of Teichmüller space.
In geometric group theory, there are many analogues of the above objects, such as the curve

complex, the arc complex, and Teichmüller space. For instance, in their work on quadratic
differentials, Hubbard and Masur [16] constructed a simplicial complex of trees that is related
to Tn. Our work is in particular inspired by the theory of outer space, a simplicial complex
defined by Culler–Vogtmann in their study of the automorphism group of a free group [7].

2.1. The complex of trees. Before defining the complex Tn we first specify precisely what
we mean by an isotopy class of trees.

Trees and isotopy. By a tree in (R2, P ) we mean an embedding ϕ of an abstract tree T0 into
R2 with the following three properties:

(1) the set P is contained in the set ϕ(T0),
(2) the set ϕ−1(P ) is contained in the set of vertices of T0, and
(3) the set of vertices of T0 with valence at most 2 is contained in ϕ−1(P ).

Let T = ϕ(T0) be a tree in (R2, P ). We refer to the images of the vertices and edges of T0 as
the vertices and edges of T . Some examples of trees in (R2, P ) are given in Figure 4. In our
diagrams, marked points are colored red. We say that two trees in (R2, P ) are isotopic if they
are isotopic (as maps) through trees in (R2, P ).

Let T be a tree in (R2, P ) and let F be a subforest of T with the property that each
component of F contains at most one point of P ; such a forest is said to be collapsible. We
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Figure 4. Several trees in (R2, P ) for P = {−1, 0, 1}

may form a new tree T ′ = T/F in (R2, P ) by collapsing each component of F to a single
point. We say that T ′ is obtained from T by a forest collapse. We may equivalently say that
T is obtained from T ′ by a forest expansion. Forest collapses and expansions are well-defined
operations for isotopy classes of trees.

Trees as arc systems. There is an alternative way to describe a tree in (R2, P ), in terms of arc
systems.

First, an arc based at infinity is the image of a proper, simple embedding of (0, 1) into R2

that avoids P (in particular, all arcs connect infinity to itself). Such an arc is essential if it is
not isotopic to infinity through arcs based at infinity. An arc system in (R2, P ) is a collection
of essential arcs based at infinity that are pairwise disjoint and pairwise non-isotopic. An arc
system in (R2, P ) is filling if each complementary region is a disk with at most one marked
point.

There is a natural bijection between the set of isotopy classes of trees in (R2, P ) and the set
of isotopy classes of filling arc systems in (R2, P ). Given a tree T in (R2, P ), a corresponding
arc system has one arc α for each edge e of T ; specifically, α is an arc that crosses e in one
point and is disjoint from T otherwise.

Collapsing a forest in a tree T corresponds to deleting arcs in the corresponding arc system.
See Figure 5 for an example; the tree on the right is obtained by contracting the middle edge
in the tree on the left.

Figure 5. Two trees in (R2, P ) and their dual arcs

Definition of the complex of trees. The complex of trees Tn is the simplicial complex defined
as follows. The vertices of Tn are the isotopy classes of trees in (R2, P ). A set of vertices
{T0, . . . , Tk} spans a k-simplex if (up to relabeling) for each i > 0 the vertex Ti is obtained
from Ti−1 by a forest collapse (equivalently, for i < j the vertex Tj is obtained from Ti by a
forest collapse). The complex of trees T3 is isomorphic to an infinite 3-regular tree. A portion
of T3 is illustrated in Figure 6.
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Figure 6. A portion of T3

A priori the complex Tn depends on the choice of P . However, if P ′ is another subset of R2

with |P ′| = |P | then a homeomorphism (R2, P ) → (R2, P ′) induces an isomorphism between
the corresponding complexes of trees.

Local finiteness and metric balls. Since each tree representing a vertex of Tn has finitely many
vertices and edges, it follows that Tn is locally finite, that is, the degree of each vertex in the
1-skeleton is finite.

There is a natural metric on the set of vertices, given by the path metric in the 1-skeleton
of Tn. Combined with the local finiteness, this means that balls of finite radius contain finitely
many vertices. This finiteness property will be crucial in our proof of Theorem 1.1.

Mapping class group action. Let P be any set of marked points in R2. The mapping class group
Mod(R2, P ) is the group of isotopy classes of the set of orientation-preserving homeomorphisms
of (R2, P ). The pure mapping class group PMod(R2, P ) is the subgroup consisting of elements
that fix each point of P .
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The group Mod(R2, P ) acts on Tn in a natural way: for h ∈ Mod(R2, P ) and T ∈ Tn, we
have that h · T is the point of Tn represented by the tree φ(t), where t is a representative of
the isotopy class T and φ is a representative of h.

2.2. The space of metric trees and contractibility. Our next goal is to show that Tn is
contractible. The strategy is to show that Tn can be realized as the spine of a space Yn of
metric trees, which is itself contractible.

Metric trees. As above, fix P ⊆ R2 with |P | = n. A metric on a tree T in (R2, P ) is a function
from the set of edges of T to R≥0; we refer to the image of an edge as its length. It makes
sense to define a metric on an isotopy class of trees, since an isotopy between trees induces a
bijection on the sets of edges. We say that a metric on a tree (or an isotopy class of trees) is
degenerate if there is a path of edges of length 0 connecting distinct points of P .

The complex of metric trees. We will define Yn as a sort of cell complex. The “cells” we define
will not be compact, and so the result is not a cell complex in the usual sense, but something
more general.

For each vertex T of Tn we consider the set of all nondegenerate metrics on T where the
sum of the lengths of the edges is 1. This set of metrics is a subset of the standard simplex
in Rm, where m is the number of edges of T . The resulting subset of the standard simplex will
be referred to as a cell. Any nonempty intersection of a face of the simplex with a cell will be
called a face of the cell. A face of a cell is also a cell; specifically it is the cell corresponding to
the tree T ′ obtained from T by collapsing some edges of T .

We form the cell complex Yn by starting with the disjoint union of the cells associated to
all vertices of Tn. We identify a face of the cell for a tree T with the cell for the corresponding
collapsed tree T ′.

Figure 7 illustrates the cell complex Y3. Every cell of Y3 has dimension 1 or 2, and Y3 is
homeomorphic to an open disk. The simplicial subdivision of this disk is the same as the usual
Farey tessellation of the hyperbolic plane.

It is also possible to define Yn as a topological space independently of any cell structure: an
isotopy class of metric trees induces a length function on the set X of isotopy classes of arcs in
(R2, P ) between points of P . This length function can be shown to be injective. The topology
on Yn is then the topology induced from the product topology on RX. The resulting topology
is homeomorphic to the one that Yn inherits from the cell structure given above.

Connection with Teichmüller space and contractibility. Our next goal is to show that Tn is
contractible. To this end, we first show that Yn is contractible. The key is to identify the latter
with a subspace of a certain arc complex, as follows.

Let An denote the simplicial complex whose vertices are isotopy classes of essential arcs
in (R2, P ) based at ∞, and whose simplices correspond to arc systems, that is, collections of
pairwise disjoint isotopy classes of arcs. Then let A◦n denote the topological space obtained
from the geometric realization of An by deleting the simplices of An corresponding to arc
systems that fail to fill (R2, P ). Using barycentric coordinates on the simplices, a point of A◦n
can be regarded as a weighted arc system, where we assign a number in [0, 1] to each arc.

The space Yn is naturally homeomorphic to A◦n: the weighted arc system corresponding to a
tree in (R2, P ) is given by a collection of arcs transverse to the edges of the tree, with weights
inherited from the transverse edges. More specifically, for each edge of the tree, we take the
unique isotopy class of arcs that intersect that edge in one point and are disjoint from the other
edges of the tree, and we declare the weight of the arc to be the length of the corresponding
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Figure 7. The complex Y3

edge of the tree. This process is reversible (this is where we use the fact that the arc systems
corresponding to points of A◦n are filling), whence the homeomorphism.

Let Teich0,n+1 denote the Teichmüller space of a sphere with n+1 punctures. Penner proved
that there is a Mod(R2, P )-equivariant homeomorphism from Teich0,n+1 to A◦n [24, Theorem
1]. We thus obtain the following immediate corollary.

Proposition 2.1. For n ≥ 2, there is a Mod(R2, P )-equivariant homeomorphism from Teich0,n+1

to Yn. In particular Yn is homeomorphic to R2n−4.

In this paper the only consequence of Proposition 2.1 that we use is the fact that Yn is
connected.

Contractibility of the complex of trees. Our complex of trees Tn can be regarded as a spine
for the space Yn. More specifically, we can regard Tn as the subset of Yn consisting of isotopy
classes of metric trees with the following property: if we scale the metric so that the maximal
length of an edge is 1, then the set of edges with length strictly less than 1 forms a subforest
where each component contains at most one element of P .

Identifying Tn as a subset of Yn as above, we can realize Tn as a Mod(R2, P )-equivariant
deformation retract (or spine) of Yn. In order to retract an arbitrary point T of Yn to Tn we
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Figure 8. Two viewpoints on bubble trees

choose the largest ` ∈ [0, 1] so that there is no path in T that connects two vertices of P and
only traverses edges of length less than `. We then build a new point T ′ of Yn by changing all
lengths in T in [`, 1] to 1 and then rescaling so that the sum of the lengths of the edges is 1.
We then form the linear interpolation between T and T ′. This process describes the desired
retraction. In summary we have the following proposition.

Proposition 2.2. For n ≥ 2, there is a natural embedding of the complex Tn as a Mod(R2, P )-
equivariant spine in Yn. In particular, Tn is contractible.

2.3. The augmented complex of trees. In our analysis of obstructed topological polyno-

mials, it will be advantageous for us to consider an augmentation T̂n of Tn, that is, a simplicial

complex that contains Tn as a subcomplex. The vertices of T̂n that do not lie in Tn are called
bubble trees; we begin by describing these.

Bubble trees. A simple closed curve is essential if it is not homotopic into a neighborhood of
a marked point or to a neighhborhood of ∞ (homotopies here may not pass a curve through
a marked point). Equivalently, a curve is essential if it has at least two marked points in its
interior and at least one marked point in its exterior.

A multicurve M in (R2, P ) is a nonempty collection {c1, . . . , cm} of pairwise disjoint, pairwise
non-homotopic, essential simple closed curves in (R2, P ). A multicurve M is un-nested if no
two curves of M are nested.

Given an un-nested multicurve M , we may obtain a new surface (R2, P̄ ) from (R2, P ) by
collapsing the interior of each component of M to a marked point. The new set of marked
points P̄ has one element for each component of M and one element for each element of P not
contained in the interior of an element of M .

A bubble tree in (R2, P ) is a graph B in R2 with the following properties:

(1) B is the union of a (possibly empty) un-nested multicurve M in (R2, P ) with a forest
BE in R2,

(2) the leaves of BE lie in M ∪ P ,
(3) the intersection BE ∩M is contained in the set of leaves of BE ,
(4) the forest BE is disjoint from the interiors of the disks bounded by M , and
(5) the image of BE in the surface (R2, P̄ ) obtained by collapsing M is a tree in (R2, P̄ ).

We refer to BE as the exterior forest for B and we refer to the image TE in (R2, P̄ ) as the
exterior tree. We refer to M as the multicurve of B, and we also refer to the components of
M as the bubbles of B. See the left-hand side of Figure 8 for a picture of a bubble tree.

An alternate way to designate a bubble tree is by a pair (M,TE), where M is an un-nested
multicurve, and TE is a tree in the surface obtained by crushing the interiors of the components
of M to points. Up to isotopy, there is a unique bubble tree B with M as its multicurve and
with TE as the exterior tree. The right-hand side of Figure 8 shows a picture of a bubble tree
corresponding to this alternate definition.
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Arc systems versus bubble trees. There is a natural correspondence between bubble trees and
simplices of the arc complex An from Section 2.2. Given a simplex of An, that is, an arc system,
the bubbles of the corresponding bubble tree correspond to those complementary regions to
the arc system containing more than one marked point (we should choose the bubble curves
to each be contained in one of these complementary regions, and homotopic to the boundary).
If we collapse the disk bounded by each such bubble to a marked point, then the arc system
becomes filling, and we obtain an isotopy class of trees on the collapsed surface; by un-crushing,
this gives rise to a bubble tree in the original surface. This process is reversible, and gives the
desired identification.

Simplices. One way to describe the simplices of T̂n is to define T̂n as the barycentric subdivision

of An. This agrees with our description of the vertices of T̂n as simplices of An.

It is also possible to describe the simplices of T̂n directly in terms of bubble trees. For instance

an edge of T̂n can be described as follows: starting with a bubble tree B with multicurve M
we may collapse some edges of B not contained in M , and if we collapse an edge connecting a
component of M to a marked point, then we enlarge that component so that it subsumes the
collapsed edge into its interior. As in Tn, higher-dimensional simplices correspond to sequences
of such collapses.

Contractibility. The complex An is contractible (for instance the proof given in [11, Theorem

5.5] applies). It follows that T̂n is contractible, although we will not use this fact in this paper.

We will use the fact that if T•n is the full subcomplex of T̂n spanned by Tn and one other vertex

in T̂n, then T•n is connected.

The augmented space of metric trees. Another way of describing the complex T̂n is through

the corresponding augmentation of Yn. There is a natural augmentation Ŷn of Yn, namely, the
space of metric trees with edge lengths in [0, 1] instead of (0, 1]. Additionally, there is a natural

cell structure on Ŷn; this is like the cell structure on Yn, except that instead of simplices with

some faces removed, the cells are the entire simplices. The complex T̂n is the poset of cells

of Ŷn.

2.4. Lifting maps. Let f be a post-critically finite topological polynomial with |Pf | = n. The
final goal of this section is to describe lifting maps

λf : Tn → Tn,

λf : T̂n → T̂n, and

λf : Yn → Yn.

After giving the definitions, we give a comparison between the last map and Thurston’s pullback
map σf : Teich0,n+1 → Teich0,n+1.

Lifting on the complex of trees. Let T be a tree in (R2, P ) where P = Pf . The preimage of T
under f is a tree in (R2, f−1(P )). Indeed, if f−1(T ) had a cycle, then its complement would
contain multiple connected components; each of these would necessarily map to the exterior
of T , violating the assumption that f is a topological polynomial (since, thinking of f as a map
of the sphere, we would have multiple points mapping to ∞). Further, if f−1(T ) had more
than one connected component, then the complement of f−1(T ) in R2 would be a sphere with
more than two punctures and the map f would induce an unbranched cover of this complement
to the complement of T , which is a sphere with exactly two punctures; this is a contradiction.
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Figure 9. The lift of a tree T in (R2, P ) under the airplane polynomial. The
result is isotopic to the Hubbard tree for the airplane

We may obtain a tree in (R2, P ) from f−1(T ) by taking the convex hull of P in f−1(T ).
By convex hull we mean the union of the simple paths in f−1(T ) connecting the points of P
pairwise. The result is the desired tree λf (T ) in (R2, P ). An example of this process is shown
in Figure 9.

The above procedure of lifting and taking the convex hull is well defined on isotopy classes
of trees, and so in this way we obtain the desired map λf : Tn → Tn. This map is simplicial,
because any forest collapse in T lifts to a forest collapse in f−1(T ).

As usual, we may reinterpret λf in terms of arc systems. The preimage of a filling arc
system is another filling arc system, and so the correspondence between filling arc systems and
vertices of Tn gives another description of λf .

Hubbard vertices. As in the introduction, we refer to the vertex of Tn corresponding to the
topological Hubbard tree Hf for an unobstructed topological polynomial f as the Hubbard
vertex for f . The Hubbard tree for a polynomial p has the property that p(Hp) ⊆ Hp, or
equivalently Hp ⊆ p−1(Hp). From this second inclusion it follows that Hp is the convex hull of
Pp in p−1(Hp), and therefore Hp is a fixed point of the lifting map λp on Tn. We conclude that
the Hubbard vertex Hf is a fixed point of λf for any unobstructed topological polynomial f .

Because we defined the Hubbard tree for a polynomial p completely in terms of the post-
critical set Pp and the Julia set for p, and since both of these are invariant under passing to

iterates of p, it follows that the Hubbard tree for an iterate pk of p is the same as the Hubbard
tree for p. Thus the Hubbard vertex for a topological polynomial f is the same as the Hubbard
vertex for any iterate fk.

Lifting on the augmented complex of trees. The simplest way to define the lifting map λf on

T̂n is to use the correspondence between bubble trees and arc systems. As in the case of Tn,
the map λf is given by lifting arc systems through f .

It is also possible to describe λf in terms of bubble trees. Given a bubble tree B, its pre-
image under f is a graph. If a bubble of this preimage is inessential, then we may collapse its
interior to a single point. Then λf (B) is the union of the essential bubbles in the resulting
graph, along with any edges that lie on some simple path connecting marked points or essential
bubbles.

Lifting on the complex of metric trees. The map λf : Yn → Yn is defined in the same way as
the map λf : Tn → Tn. The only new ingredient is that if T is a metric tree, then f−1(T )
inherits a metric. Indeed, each edge of f−1(T ) is a union of preimages of edges of T , and so
the length of a given edge is the sum of the lengths of the corresponding edges in T (with
multiplicity). The convex hull also inherits a metric from the metric on f−1(T ), namely, the
restriction. We may scale the metric on the convex hull so that the sum of the lengths of the
edges is 1, thus obtaining a point λf (T ) of Yn.
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A comparison with Thurston’s pullback map. Through the identification of Yn with Teich0,n+1

there is a strong analogy between our lifting map λf : Yn → Yn and Thurston’s pullback map
σf : Teich0,n+1 → Teich0,n+1. These maps are not equal to each other. For instance, when f
is an unobstructed topological polynomial, σf has a unique fixed point in Teich0,n+1 and this
fixed point is attracting under iteration of σf . On the other hand, there are examples (such
as the third iterate of the rabbit polynomial R) where λf has a positive-dimensional simplex
where each point is fixed.

3. Finding Hubbard vertices for unobstructed maps

In this section we prove the first statement of Theorem 1.1, which says that the 2-neighborhood
of the Hubbard vertex for an unobstructed topological polynomial f is a nucleus for the action
of λf on the corresponding tree complex Tn.

Our proof is based on a theorem of Poirier that gives two combinatorial conditions for an
invariant tree to be a Hubbard tree: an angle condition and an expanding condition. Poirier
proves his result for a slightly larger class of maps than the ones we have been considering,
namely, the class of marked topological polynomials. (We warn the reader that the words
“expansion” and “expanding” in the terms “forest expansion” and “expanding condition” refer
to distinct ideas.)

We begin in Section 3.1 by defining marked topological polynomials, invariant trees, and the
dynamical map. We also state and prove the Alexander method, a tool that we use throughout
this paper to show that two topological polynomials are Thurston equivalent. We state our
version of Poirier’s theorem as Proposition 3.5 in Section 3.2; readers unfamiliar with Hubbard
trees might simply take this proposition as the definition. In Sections 3.3 and 3.4 we show that
any tree that is invariant under the tree lifting map admits a forest expansion satisfying the
angle condition (Proposition 3.6), and then that the latter admits a forest collapse satisfying
the expanding condition (Proposition 3.10). With this in hand, we complete the proof of the
first statement of Theorem 1.1 in Section 3.5.

3.1. Invariant trees and the Alexander method. In this section we introduce several
combinatorial tools that we will use in the recognition of topological polynomials. As discussed
above, we begin by defining the class of marked topological polynomials. We then define
invariant trees for marked topological polynomials and their corresponding dynamical maps.
Finally we state and prove the Alexander method, as well as a version of the Alexander method
that is specialized to the case of maps of degree 2.

Marked topological polynomials. A marked topological polynomial is a pair (f,A), where f is
a post-critically finite topological polynomial and A is a finite set in R2 that contains Pf and
satisfies f(A) ⊆ A. We refer to A as the set of marked points. Every post-critically finite
topological polynomial can be regarded as a marked topological polynomial.

Two marked topological polynomials (f,A) and (g,B) are Thurston equivalent if there are
homeomorphisms φ0, φ1 : (R2, A)→ (R2, B) that are isotopic relative to A such that φ0f = gφ1.

A marked topological polynomial (f,A) is a marked polynomial if f is a polynomial map.
The Hubbard tree for a marked polynomial (f,A) is the tree in (R2, A) obtained as the union
of all regulated arcs in the filled Julia set for f between pairs of points in A. More generally, if
(f,A) is a marked topological polynomial that is Thurston equivalent to a marked polynomial
(g,B) by homeomorphisms φ0, φ1 (as in the introduction), then a topological Hubbard tree for
(f,A) is the preimage of the Hubbard tree for (g,B) under φ0.

If (f,A) is a marked topological polynomial and T is a tree in (R2, A), its lift is the convex
hull in f−1(T ) of the points in A.
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(a) (b) (c)

Figure 10. (a) The topological Hubbard tree Hf for for the cubic polynomial

f(z) = z3 − 3z/4 + i
√

7/4. (b) A second invariant tree T for f , obtained by
expanding Hf . (c) A third invariant tree T ′ for f , obtained by contracting T
along two edges

The Alexander method. The following proposition is one of the key technical tools of the
paper. In essence, it says that a marked topological polynomial is completely determined by
its action on a single tree. A closely related statement was proven by Bielefeld–Fisher–Hubbard
[3, Theorem 7.8].

Proposition 3.1 (Alexander method). Let (f,A) and (g,B) be marked topological polynomials,
let Tf be a tree in (R2, A) and Tg be a tree in (R2, B), and suppose there exists a homeomorphism
h : (R2, f−1(A))→ (R2, g−1(B)) so that

(1) h(Tf ) is isotopic to Tg in (R2, B),

(2) hf and gh agree on f−1(A), and

(3) h(f−1(Tf )) is isotopic to g−1(Tg) in (R2, g−1(B)).

Then f and g are Thurston equivalent (and h gives the Thurston equivalence). In the case
where A = B, where h is isotopic to the identity relative to f−1(A), and where f , g, and
h satisfy the above three conditions, we may further conclude that f is isotopic to g relative
to f−1(A).

Proof. It follows from the first condition in the statement that there exists a homeomorphism
h0 that is homotopic to h relative to A so that h0(Tf ) is equal to Tg. Similarly, it follows
from the third condition that there exists a homeomorphism h1 that is isotopic to h relative to
f−1(A) so that h1(f−1(Tf )) is equal to g−1(Tg). It follows from the second condition that the
restrictions of gh1 and h0f to the set of vertices of f−1(Tf ) (i.e. points of f−1(A) together with
branching points) are equal. Thus we may further modify h1 by isotopy relative to f−1(A) so
that the restrictions of gh1 and h0f to the entire tree f−1(Tf ) are equal.

We may identify (R2, f−1(A)) and (R2, B) with (S2, f−1(A)∪∞) and (S2, B∪∞), by which
we mean the sphere with marked points coming from f−1(A) (or B) and ∞. We may further
regard (S2, f−1(A) ∪ ∞) as being obtained from f−1(Tf ) by attaching a disk with a single
marked point at ∞ and similarly for (S2, B ∪ ∞) and Tg. Since a branched cover of a disk
with one marked point over another disk with one marked point is determined up to isotopy
(relative to the boundary and the marked point) by its restriction to the boundary, it follows
from the conclusion of the previous paragraph that we may further modify h1 by an isotopy
so that gh1 is equal h0f . In other words, f and g are Thurston equivalent, as desired. �

Invariant trees. Given a post-critically finite topological polynomial f , an invariant tree for f
is a tree T in (R2, Pf ) for which λf (T ) is isotopic to T . That is, T is invariant if the convex
hull of Pf in f−1(T ) is isotopic to T .



RECOGNIZING TOPOLOGICAL POLYNOMIALS BY LIFTING TREES 21

−→

Figure 11. The topological Hubbard tree Hf for f(z) = z3 − 3
4z + i

√
7

4 and

f−1(Hf ). Here and throughout, preimages of marked points are shown in white,
and each of the edges labeled ẽi maps isomorphically to ei

We have seen that the Hubbard tree for a post-critically finite polynomial f is an invariant
tree. One might guess that any invariant tree must be isotopic to the Hubbard tree, but this is
not true. For example, Figure 10 shows three distinct invariant trees for the cubic polynomial

f(z) = z3 − 3

4
z +

i
√

7

4
.

The polynomial f has four post-critical points.
The tree Hf on the left-hand side of Figure 10 is the topological Hubbard tree for f . We

can check with a computer that f−1(Hf ) is the tree shown on the left-hand side of Figure 11.
The map f−1(Hf )→ Hf maps each edge labeled ẽi in f−1(Hf ) isomorphically to the edge ei
in T . We then see from the picture that the convex hull of the marked points in f−1(Hf ) is
equal to Hf , and so Hf is indeed invariant (even without knowing that it is the Hubbard tree).

The tree T in Figure 10 is obtained from the Hubbard tree Hf by a single edge expansion,
and the tree T ′ is obtained from T by collapsing two edges. If we perform the expansion on
Hf and at the same time perform the corresponding edge expansions on f−1(Hf ) (again, refer
to Figure 11), we construct in this way f−1(T ) from f−1(Hf ), and we again see that T is the
convex hull of the marked points of f−1(T ). We may similarly show that T ′ is invariant by
simultaneously performing edge collapses on T and f−1(T ).

Pilgrim [26] has explained to us a topological construction of the map f from Figure 11,
as follows. We start with a square in the plane. We then connect all 4 corners to infinity by
straight rays. The result is a “plane graph” with 4 compact edges and 4 non-compact edges,
or rays. We may construct this graph so that it is invariant under rotation of the plane by π.
If we then blow up two rays at adjacent corners, as described in the paper by Pilgrim–Tan [30,
Section 5.2], we obtain a topological polynomial that is Thurston equivalent to f .

We will use the polynomial f as a running example throughout this section.

The dynamical map. Any invariant tree T for a post-critically finite topological polynomial
f has an associated dynamical map f∗ : T → T . In the special case where f(T ) ⊆ T , this
is simply the restriction of f to T , but in general we must compose f with an isomorphism
T → T ′ obtained from an ambient isotopy fixing Pf , where T ′ is the convex hull of Pf in
f−1(T ).

The dynamical map f∗ : T → T maps vertices of T to vertices of T , and maps each edge of
T to a path of one or more edges in T . Note that an edge of T that has a critical point in its
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interior may map to a path of edges in T that includes backtracking. This mapping of vertices
and edges depends only on the isotopy class of f .

For our example f(z) = z3 − 3
4z + i

√
7

4 , we can see from Figure 11 that the dynamical map
f∗ : Hf → Hf has the following action on the edges of Hf :

f∗(ei) = ei+2

where the indices are taken modulo 4.

Alexander method in degree 2. Here we prove a useful consequence of the Alexander method
for topological polynomials of degree 2, Proposition 3.3 below. Shepelevtseva–Timorin [35,
Theorem A] prove a version of this for post-critically finite branched covers of the sphere of
degree 2.

A topological polynomial f of degree 2 has a unique critical point p0 in R2; its image f(p0)
is the critical value. A topological polynomial of degree 2 is post-critically finite if and only
if the critical point is either periodic or pre-periodic, and we will be focusing on the periodic
case.

Lemma 3.2. Let f be a topological polynomial of degree 2 whose critical point is periodic of
period n ≥ 2, and let T be an invariant tree for f . Then the critical value for f has valence 1
in T .

Proof. Let p0 be the critical point for f with orbit (p0, . . . , pn−1). Since f∗ is locally injective
at p1, . . . , pn−1, we know that

val(p1) ≤ val(p2) ≤ · · · ≤ val(pn−1)

where val(pi) denotes the valence of pi in T . But the leaves of T are marked, and at least one
of p1, . . . , pn−1 is a leaf (T has at least two leaves), and therefore val(p1) = 1. �

The proof of the following proposition is a variant of an argument of Douady and Hubbard [8,
Section 6.1].

Proposition 3.3. Let f and g be topological polynomials of degree 2 whose critical points are
periodic of the same period n ≥ 2. Let Tf and Tg be invariant trees for f and g, and suppose
there exists a homeomorphism h : (R2, Pf )→ (R2, Pg) so that

(1) h(Tf ) is isotopic to Tg in (R2, Pg),

(2) hf agrees with gh on Pf , and

(3) h maps the critical point of f to the critical point of g.

Then f and g are Thurston equivalent (and h gives the Thurston equivalence). In the case
where Pf = Pg, where h is isotopic to the identity relative to Pf , and where f , g, and h satisfy
the above three conditions, we may further conclude that f is isotopic to g relative to Pf .

Proof. Modifying h by an isotopy, we may assume that h(Tf ) = Tg. Let p0 and q0 be the critical
points for f and g respectively, with orbits (p0, . . . , pn−1) and (q0, . . . , qn−1). By conditions (2)
and (3), we know that h(pi) = qi for each i, and in particular h(p1) = q1. We can therefore lift

h through f and g to obtain a homeomorphism h̃ : (R2, f−1(Pf )) → (R2, g−1(Pg)) such that

gh̃ = hf . Note then that h̃ maps f−1(Tf ) to g−1(Tg). Moreover, since g(h̃(pi)) = h(f(pi)) =

h(pi+1) = qi+1 for each i, we know that each h̃(pi) is either qi or δg(qi), where δg is the nontrivial

deck transformation for g. Replacing h̃ by δgh̃ if necessary, we may assume that h̃(p1) = q1.

We claim that h̃(pi) = qi for each i.
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We now prove the claim. By Lemma 3.2, the point p1 is a leaf of Tf , so p0 separates f−1(Tf )
into two components that map homeomorphically to Tf under f , and q0 separates g−1(Tg)
similarly. Indeed, for each i ≥ 1, one of the components of g−1(Tg) \ {q0} contains qi and the
other contains δg(qi). But for such an i, the following statements are all equivalent:

(1) h̃(pi) lies in the same component of g−1(Tg) \ {q0} as q1.
(2) pi lies in the same component of f−1(Tf ) \ {p0} as p1.
(3) pi lies in the same component of Tf \ {p0} as p1.
(4) qi lies in the same component of Tg \ {q0} as q1.
(5) qi lies in the same component of g−1(Tg) \ {q0} as q1.

Here the equivalence of (1) and (2) follows from the fact that h̃maps f−1(Tf ) homeomorphically

to g−1(Tg), with h̃(p0) = q0 and h̃(p1) = q1; the equivalence of (2) and (3) follows from the
invariance of Tf ; the equivalence of (3) and (4) follows from the homeomorphism between Tf
and Tg induced by h; and the equivalence of (4) and (5) follows from the invariance of Tg.

From the equivalence of (1) and (5), we conclude that h̃(pi) and qi lie in the same component

of g−1(Tg) \ {q0}, and therefore h̃(pi) = qi for all i. This completes the proof of the claim.
Since Tf is isotopic to the convex hull of Pf in f−1(Tf ) and Tg is isotopic to the convex hull

of Pg in f−1(Tg), it follows that h̃(Tf ) is isotopic to Tg in (R2, Pg) (and hence h̃ is isotopic to

h relative to Pf ). Also, h̃ agrees with h on Pf , so h̃f agrees with gh̃ = hf on f−1(Pf ), and

we know that h̃ maps f−1(Tf ) to g−1(Tg). By the Alexander method (Proposition 3.1), we

conclude that h and h̃ provide a Thurston equivalence between f and g. �

3.2. Poirier’s conditions. The goal of this subsection is to state Poirier’s conditions and to
prove that they are sufficient conditions for an invariant tree to be a topological Hubbard tree
for an unobstructed post-critically finite topological polynomial; see Proposition 3.5. In order
to state the two conditions, we need to introduce the notion of angle assignments and the
notion of a Julia edge.

Angle assignments. Given a tree T in (R2, P ) and a vertex v of T with incident edges e1, . . . , en
(in counterclockwise order), the angles at v are the elements of the set

Θ(T, v) =
{

(e1, e2), (e2, e3), . . . , (en−1, en), (en, e1)
}
.

An angle assignment at v is a function ∠ : Θ(T, v)→ (0, 1] such that

∠(e1, e2) + · · ·+ ∠(en−1, en) + ∠(en, e1) = 1.

More generally, the angles Θ(T ) of a tree T are the disjoint union of Θ(T, v) as v ranges over
all the vertices of T , and an angle assignment for T is a function ∠ : Θ(T ) → (0, 1] whose
restriction to each Θ(T, p) is an angle assignment at v. We refer to ∠(θ) as the measure of the
angle θ.

If f is a post-critically finite topological polynomial and T is a tree in (R2, Pf ), then we can
lift an angle assignment ∠ on T to an angle assignment ∠′ on T ′ = λf (T ) using the following
procedure.

(1) First we lift ∠ to an angle assignment ∠̃ on f−1(T ) defined by

∠̃(e1, e2) =
∠
(
f(e1), f(e2)

)
df (v)

for (e1, e2) ∈ Θ(f−1(T ), v), where df (v) is the local degree of f at v.
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(2) Next we restrict ∠̃ to an angle assignment ∠′ on T ′ as follows. Observe that each
vertex v of T ′ is also a vertex of f−1(T ), with each angle at v in T ′ obtained by joining
together one or more angles at v in f−1(T ). As such, we define ∠′ so that the measure
of each angle in T ′ is the sum of the measures of the corresponding angles in f−1(T ).

An example of this procedure for the airplane polynomial is shown in Figure 12. Given an

(a) (b) (c)

Figure 12. (a) An angle assignment ∠ for a tree T . (b) The lift ∠̃ on f−1(T ),

where f is the airplane polynomial. (c) The restriction ∠′ of ∠̃ to λf (T )

angle assignment ∠ on T , we will refer to the resulting angle assignment ∠′ on λf (T ) as the
lift of ∠ to λf (T ), even though it is really a restriction of a lift.

If T is an invariant tree for f , then any angle assignment ∠ on T lifts to another angle
assignment ∠′ on the same T . Such an angle assignment is said to be invariant if ∠ = ∠′.

Fatou vertices/edges and Julia vertices/edges. If T is an invariant tree with dynamical map
f∗ : T → T , a vertex v of T (possibly unmarked) is said to be a Fatou vertex if the forward
orbit of v contains a periodic critical point of f . In the case where T is a Hubbard tree for a
polynomial map f , these are precisely the vertices of T that lie in the Fatou set of f . Vertices
of T that are not Fatou vertices are called Julia vertices. An edge is a Julia edge if both of its
vertices are Julia vertices. An edge that is not a Julia edge is called a Fatou edge. An edge is
periodic if there exists a k ≥ 1 such that fk∗ maps e homeomorphically to itself.

The conditions. Let (f,A) be a marked topological polynomial, and let T be an invariant tree
for (f,A). We will refer to the following conditions on T as Poirier’s conditions.

Angle condition. There exists an invariant angle assignment for T .

Expanding condition. T has no periodic Julia edges.

The main result of this subsection is Proposition 3.5, which states that if an invariant tree
for f satisfies the Poirier conditions, then it is the Hubbard tree Hf ; this is a version of a result
of Poirier.

Consider, for example, the invariant trees shown in Figure 10. The tree Hf is the Hubbard
tree, and so it satisfies both of Poirier’s conditions. The tree T satisfies the angle condition
but not the expanding condition (specifically, the middle edge fails). The tree T ′ satisfies the
expanding condition (there are no Julia edges) but not the angle condition; see the end of
Section 3.3.

Our proof of Proposition 3.5 requires the following lemma.

Lemma 3.4. Let (f,A) be a marked topological polynomial, where A contains the critical
points of f . An invariant tree T for f in (R2, A) is a topological Hubbard tree for f if and only
if it satisfies the angle condition and the expanding condition.
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Proof. Poirier proves [31, Theorem 1.1] that the Hubbard tree for a marked polynomial (where
critical points are marked) satisfies the angle condition and the expanding condition, and it
follows immediately that the same holds for topological Hubbard trees.

For the converse, suppose that T is an invariant tree for (f,A) that satisfies the angle
condition and the expanding condition. Since the critical points for f are marked, Poirier’s
theorem tells us that we can realize T as the Hubbard tree for some marked polynomial.
That is, there exists a marked polynomial (g,B) and a homeomorphism h : (R2, f−1(A)) →
(R2, g−1(B)) such that:

(1) h(T ) is the Hubbard tree H(g,B) for (g,B), and

(2) h(f−1(T )) is isotopic to g−1(H(g,B)) in (R2, g−1(B)).

By the Alexander method (Proposition 3.1), it follows that h gives a Thurston equivalence
from f and g, and therefore T is a topological Hubbard tree for (f,A). �

We would like to apply Poirier’s conditions to the case where A is the post-critical set Pf .
Since Pf does not necessarily contain the critical points of f , this requires the following propo-
sition.

Proposition 3.5. Let f be a post-critically finite topological polynomial, and let T be an
invariant tree for f . Then T is a topological Hubbard tree for f if and only if it satisfies the
angle condition and the expanding condition.

Proof. Let A = f−1(Pf ). Then (f,A) is a marked topological polynomial, and A contains the
critical points of f . The tree T is a topological Hubbard tree for f if and only if f−1(T ) is
a topological Hubbard tree for (f,A), and by Lemma 3.4 this occurs if and only if f−1(T )
satisfies the angle condition and the expanding condition. Thus it suffices to prove that T
satisfies the two conditions if and only if f−1(T ) does.

For the angle condition, observe first that any invariant assignment of angles for f−1(T )
restricts to an invariant assignment of angles for T (where each angle of T is associated to an
angle of f−1(T ) via an isotopy from T to a subtree of f−1(T )). Conversely, given any invariant
assignment of angles for T we can take the preimage to obtain an angle assignment for f−1(T ),
and this is invariant since the lift of an angle assignment on f−1(T ) is entirely determined
by the restriction of that angle assignment to T . (Since f−1(T ) is invariant, every vertex of
f−1(f−1(T )) that is a vertex of f−1(T ) maps to a vertex of T , and we can therefore restrict
the angle assignment obtained by lifting from T .)

For the expanding condition, observe that every periodic vertex of f−1(T ) is a vertex of T ,
and therefore any periodic Julia edge of f−1(T ) must correspond to an edge of T . For the
converse, if e is a periodic Julia edge in T , then f∗(e) is a single edge in T , so e must correspond
to an edge of f−1(T ), specifically a periodic Julia edge. �

Note that Proposition 3.5 does not assume that f is unobstructed. In the case where f
is obstructed, the proposition implies that there cannot exist any invariant tree T for f that
satisfies both the angle condition and the expanding condition.

3.3. Achieving the angle condition. The goal of this section is to prove the following
proposition.

Proposition 3.6. Let f be a post-critically finite topological polynomial, and let T be an
invariant tree for f . Then there exists an invariant tree T ′ for f that is a forest expansion of
T and satisfies the angle condition.
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The invariant trees T and T ′ in Figure 10 illustrate the proposition. The tree T ′ fails the
angle condition, and the tree T—which is obtained from T ′ by expanding two edges—does
satisfy the angle condition.

Our proof of the proposition will require us to consider two different types of angles. We
begin by discussing these.

Angles at Fatou and Julia vertices. If T is an invariant tree for a post-critically finite topological
polynomial f , then we can partition the angles of T into the disjoint union of two sets

Θ(T ) = ΘF (T ) ]ΘJ(T )

where ΘF (T ) and ΘJ(T ) are the sets of angles at the Fatou vertices and Julia vertices, respec-
tively. Since every vertex in the preimage of a Fatou vertex is a Fatou vertex and every vertex
in the preimage of a Julia vertex is a Julia vertex, we can lift angle assignments separately on
these two sets. Thus a tree T satisfies the angle condition if and only if it has both an invariant
angle assignment on its Fatou vertices and an invariant angle assignment on its Julia vertices.

The following lemma is essentially due to Poirier [31, Section 1].

Lemma 3.7. Let f be a post-critically finite topological polynomial, and let T be an invariant
tree for f . Then T has an invariant angle assignment on its Julia vertices.

Proof. Let f∗ : T → T be the dynamical map. If v is any vertex of T that is not a critical
point, then f∗ must be locally one-to-one in a neighborhood of v, and hence the degree of
f∗(v) is greater than or equal to the degree of v. It follows that all of the vertices in each
periodic cycle of Julia vertices must have the same degree. This means that we can construct
an invariant angle assignment on the periodic Julia vertices by setting the angle measures at
each such vertex to be all equal. We can then extend the angle assignment to the remaining
Julia vertices by lifting. �

It follows from Lemma 3.7 that an invariant tree T satisfies the angle condition if and only
if it has an invariant angle assignment on its Fatou vertices.

Non-negative angle assignments. Recall that an angle assignment ∠ : Θ(T ) → (0, 1] on a tree
T must be positive, in the sense that all of the angles are required to have positive measure.
A non-negative angle assignment ∠ : Θ(T ) → [0, 1] is similar to an angle assignment, except
that angles are allowed to have measure 0. Note that we still require the angles at each vertex
of a non-negative angle assignment to add up to 1. Our definitions of lifting and invariance
generalize to the case of non-negative angle assignments.

Lemma 3.8. Let f be a post-critically finite topological polynomial, and let T be an invariant
tree for f . Then T has an invariant non-negative angle assignment.

Proof. Let Ā(T ) ⊆ [0, 1]Θ(T ) be the set of all non-negative angle assignments for T . Observe
that for each vertex v of T of valence k, the set of possible non-negative angle assignments
at v is a closed (k − 1)-simplex in [0, 1]Θ(T,p). It follows that Ā(T ) is a product of closed
simplices, and is therefore homeomorphic to a closed, finite-dimensional ball. Lifting defines a
continuous function L : Ā(T )→ Ā(T ), so by Brouwer’s fixed point theorem L has a fixed point
in Ā(T ). �

The function L in the proof of Lemma 3.8 is linear, and the fixed point of L is an eigenvector
with eigenvalue 1. So the fixed point can be computed explicitly.

Given an invariant tree T with an invariant non-negative angle assignment, our strategy for
proving Proposition 3.6 will be to modify T to eliminate the angles that are assigned an angle
measure of 0 by the map L.
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−→

Figure 13. Folding at a vertex of valence 8 along the set {θ1, θ4, θ5, θ7}

Foldings. Let T be a tree in (R2, P ) and let v be a vertex of T . Given any proper subset
S ⊂ Θ(T, v), the associated folding of T along S is the tree obtained by identifying initial
segments of pairs of edges adjacent to S, as shown in Figure 13. Note that such a folding is
actually a forest expansion of T at v, with one new vertex-edge pair for each maximal set of
consecutive angles in S (e.g. {θ1}, {θ4, θ5}, and {θ7} in Figure 13). The resulting angles of
Θ(T ′, v) correspond to the angles of Θ(T, v) that do not lie in S.

More generally, given a tree T and a subset S ⊆ Θ(T ) that does not include all the angles
at any vertex, the folding of T along S is the tree obtained by folding along S ∩ Θ(T, v) at
each vertex v of T . Again, note that such a folding is actually a forest expansion of T .

Lemma 3.9. Let f be a post-critically finite topological polynomial, and let T be an invariant
tree for f . Let ∠ be an invariant non-negative angle assignment for T , let

S = {θ ∈ Θ(T ) | ∠(θ) = 0}

and let T ′ be the folding of T along S. Then T ′ is an invariant tree for f that satisfies the
angle condition.

Proof. Let ∠̃ be the lift of ∠ to f−1(T ), and let

S = {θ ∈ Θ(f−1(T )) | ∠̃(θ) = 0}.

We have that f−1(T ′) is isotopic to the folding of f−1(T ) along S. Since T is an invariant
tree for f , the convex hull of Pf in f−1(T ) is T , so the convex hull of Pf in f−1(T ′) must be
a folding of T . But since ∠ is invariant, the angles of T that are obtained by joining together
angles of S are precisely the angles of S. It follows that the convex hull of Pf in f−1(T ′) is
precisely the folding of T along S, and therefore T ′ is an invariant tree for f .

Now, T ′ has some “old” vertices that come from T , while other vertices of T ′ are “new”
vertices that result from the folding. The original non-negative angle assignment ∠ induces
a positive angle assignment on each of the old vertices of T ′. In particular, since all of the
Fatou vertices of T ′ are old, we have a positive, invariant angle assignment on all of the Fatou
vertices of T . By Lemma 3.7, this extends to an invariant angle assignment on all of T . �

Completing the proof. We are now ready to prove Proposition 3.6, which states that invariant
trees have forest expansions with invariant angle assignments.

Proof of Proposition 3.6. By Lemma 3.8, there exists a non-negative angle assignment ∠ for T .
By Lemma 3.9, we can use ∠ to produce a folding T ′ of T which is invariant for f and satisfies
the angle condition. �
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(a) (b) (c)

Figure 14. (a) An angle assignment for the tree T ′. (b) The lift to f−1(T ′).
(c) The restriction of the lift to T ′

We can illustrate Proposition 3.6 with our running example f(z) = z3− 3z/4 + i
√

7/4 from
Section 3.1. Let T ′ be the invariant tree for f shown in Figure 10(c). An angle assignment for
T ′ is a tuple (θ1, θ2, θ3, θ4, θ5, θ6) of angles as shown in Figure 14(a), where

θ1 = θ2 + θ3 = θ4 + θ5 = θ6 = 1.

In particular, the polyhedron Ā(T ′) ⊆ [0, 1]6 of non-negative angle assignments is a square.
The lifting map Ā(T ′)→ Ā(T ′) on angles is

(θ1, θ2, θ3, θ4, θ5, θ6) 7→
(
θ6, θ4 + 1

2θ5,
1
2θ5, θ2, θ3, θ1

)
as shown in parts (b) and (c) of Figure 14. This map has a unique fixed point in Ā(T ′), namely
the point (θ1, θ2, θ3, θ4, θ5, θ6) = (1, 1, 0, 1, 0, 1). Since θ3 and θ5 are 0, we can fold along these
angles to obtain a new invariant tree that satisfies the angle condition. Specifically, we obtain
the tree T shown in Figure 10(b), which satisfies the angle condition since all of its Fatou
vertices are leaves.

3.4. Achieving the expanding condition. Our next goal is to prove the following propo-
sition.

Proposition 3.10. Let f be an unobstructed post-critically finite topological polynomial with
topological Hubbard tree Hf , and let T be an invariant tree for f that satisfies the angle condi-
tion. Then T is a forest expansion of Hf .

The invariant tree T in Figure 10 illustrates the proposition. The tree T fails the expanding
condition, and the Hubbard tree Hf is obtained from T by an edge collapse.

Before proceding to the proof of Proposition 3.10, we begin with some preliminaries.
If F is a subforest of T , its lift is the subforest F ′ of λf (T ) consisting of all edges of λf (T ) that

map entirely into F under f . Assuming F is collapsible, the lift F ′ is precisely the subforest of
λf (T ) for which λf (T )/F ′ = λf (T/F ). It follows that F ′ must be collapsible whenever F is.

If T is an invariant tree for f , then a subforest F of T is invariant if it is equal to its own
lift. If F is invariant and collapsible, then the quotient T/F is again an invariant tree for f .
Note that a subforest F of T satisfying f∗(F ) ⊆ F is not necessarily invariant, since its lift
may properly contain F . In this case, the subforest F ′ consisting of all edges that eventually
map into F under f∗ is invariant, and is the smallest invariant subforest of T that contains F .
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Lemma 3.11. Let f be an unobstructed post-critically finite topological polynomial, and let T
be an invariant tree for f . Let F be the union of all periodic Julia edges of T , and let F ′ be
the smallest invariant subforest of T that contains F . Then F ′ is collapsible and the quotient
T/F ′ satisfies the expanding condition.

Proof. After possibly modifying f by an isotopy that fixes Pf , we may assume that f(T ) ⊆ T .
If e is a periodic Julia edge of T , then clearly e cannot have any critical points in its interior,
and since the endpoints of e are periodic Julia vertices they cannot be critical points either.
It follows that no critical points of f lie in F , so f∗ maps F homeomorphically to F , and is
one-to-one in a neighborhood of F in R2.

We claim that no connected component of F can have more than one marked point. For
if K1 were a component of F with more than one marked point, then K1 would be part of a
periodic cycle K1, . . . ,Km of connected components of F , each of which would have more than
one marked point. Then the simple closed curves c1, . . . , cm that surround K1, . . . ,Km are all
essential and therefore form a Levy cycle for f , a contradiction since f is unobstructed.

We conclude that F is a collapsible subforest of T . Since F ′ can be obtained from F by
lifting finitely many times, it follows that F ′ is collapsible as well. All that remains is to prove
that T/F ′ has no periodic Julia edges.

Note first that, since f is one-to-one in a neighborhood of F , no edge in the complement of
F that is incident to a vertex of F can map into F , so such edges do not lie in F ′. It follows
that each connected component of F is also a connected component of F ′, and indeed these
are precisely the connected components of F ′ that are periodic under f .

Now suppose to the contrary that e is an edge of T not in F ′ whose image e′ in T/F ′ is a
periodic Julia edge. Let f ′∗ be the dynamical map on T/F ′, and let k ≥ 1 so that (f ′∗)

k maps
e′ to itself in an orientation-preserving fashion. Then fk∗ maps e to a path of the form αeβ
in T , where each of α and β is either trivial or a path in F ′. Note that e must be a Julia edge
in T since Fatou vertices in T map to Fatou vertices in T/F ′. But we know that e is not a
periodic Julia edge, so either α or β must be nontrivial, say α. Then the endpoint v of e at
which α meets e must lie in F ′. Indeed, since α connects v and fk(v), the component of F ′

that contains v is periodic under f , and is therefore a component of F . But f is one-to-one
in a neighborhood of F , so the initial segment of e near v cannot map into F under fk, a
contradiction. �

Proof of Proposition 3.10. By Lemma 3.11, there exists a collapsible invariant subforest F ′ of
T consisting entirely of Julia edges so that T/F ′ satisfies the expanding condition. Since F ′

does not contain any of the Fatou vertices, the invariant angle assignment on the Fatou vertices
of T descends to an invariant angle assignment on the Fatou vertices of T/F ′. By Lemma 3.7,
it follows that T/F ′ satisfies the angle condition, so by Proposition 3.5 the quotient T/F ′ must
be the topological Hubbard tree for f . �

We can illustrate Proposition 3.10 with our running example f(z) = z3−3z/4+ i
√

7/4 from
Section 3.1. Let T be the invariant tree T for the polynomial f shown in Figure 10(b). Since
all of the Fatou vertices of T are leaves, this tree satisfies the angle condition. However, it does
not satisfy the expanding condition since the middle edge is a Julia edge that maps to itself.
The subforest F consisting of this edge is an invariant subforest, and the quotient T/F is the
Hubbard tree for f shown in Figure 10(a).

3.5. Proof of the first statement of Theorem 1.1. We are now ready to prove the first
statement of our main theorem.
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Proof of Theorem 1.1(1). As in the statement, let f be an unobstructed post-critically finite
topological polynomial and let n = |Pf |.

We claim that every vertex T of Tn is either periodic or pre-periodic under the action of λf .
In other words, for each vertex T of Tn, there is an m ≥ 0 and a r > 0 so that

λmf (T ) = λm+r
f (T ).

(Note that m and r depend on T .) Since the action of λf is simplicial (see Section 2.4) it never
increases the distance between any two vertices. In particular, since the Hubbard vertex Hf is
fixed under λf , the ball of any finite radius around Hf must map into itself. Since Tn is locally
finite, any such ball has only finitely many vertices. Thus, using the fact that Tn is connected,
we see that the orbit of any vertex T of Tn under λf must eventually repeat, whence the claim.

Now, given any vertex T of Tn, let m and r be as above. Then T ′ = λmf (T ) is fixed under λrf ,

so T ′ is an invariant tree for f r. By Proposition 3.6, there is a vertex T ′′ that has distance at
most 1 from T ′ and satisfies the angle condition for f r. Then by Proposition 3.10 the Hubbard
vertex for f r has distance at most 1 from T ′′. Since the Hubbard vertices for f and f r are the
same, the result follows. �

4. Finding Hubbard vertices for obstructed maps

In this section we prove the second statement of Theorem 1.1, which says that if f is an
obstructed post-critically finite topological polynomial with |Pf | = n and T is any vertex

of Tn, then for all sufficiently large k the vertex λkf (T ) has distance at most 1 from the Levy
set Lf ⊆ Tn.

We begin in Section 4.1 by giving Pilgrim’s original definition of the canonical obstruction
(for an arbitrary post-critically finite branched self-cover of the sphere) and then describing
Selinger’s topological characterization of it. In Section 4.2 we prove some basic structural
properties of the canonical obstruction, in the case of a topological polynomial; the main
result of this section is Proposition 4.1. Using this proposition, we define in Section 4.3 the

Hubbard vertex for an obstructed topological polynomial, which lies in T̂n. We also give a
version of the Poirier conditions for Hubbard vertices. In Section 4.4 we describe and prove
the existence of our normal form for topological polynomials, which is used in Section 5.
Finally, in Section 4.5 we give the proof of the second statement of Theorem 1.1. In the proof
the Hubbard vertex plays the same role for obstructed maps that the analogous Hubbard
vertex does for unobstructed maps. At the end of Section 4.5 we explain two refinements of
Theorem 1.1 that are afforded by the proof.

4.1. Canonical obstructions. We briefly discuss here Thurston’s theory of Thurston ob-
structions, Pilgrim’s theory of canonical obstructions, and Selinger’s characterization of the
canonical obstruction.

Thurston obstructions. Let f : S2 → S2 be a post-critically finite branched covering map.
Given a multicurve M in (R2, Pf ), the lift λf (M) of M is the multicurve obtained from f−1(M)
by deleting all inessential curves and deleting all but one curve from each isotopy class (this
multicurve is well defined up to isotopy). A multicurve M is stable under f if every curve of
λf (M) is isotopic to a curve of M , and is invariant under f if λf (M) is isotopic to M (so any
invariant multicurve is stable).

Thurston proved that f fails to be Thurston equivalent to a rational map if and only if it has
a stable multicurve that satisfies a certain contracting condition [10, 37]. Such a multicurve is
known as a Thurston obstruction for f . In the case where f is a post-critically finite topological
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polynomial, a Thurston obstruction for f is precisely a stable multicurve in R2\Pf that contains
a Levy cycle [3, Theorem 5.5].

Canonical obstructions. The theory of canonical obstructions was initiated by Pilgrim [27]. In
his work, the canonical obstruction Γf of post-critically finite branched cover f : S2 → S2 is
defined to be the multicurve consisting of one representative from each isotopy class of essential
simple closed curves in S2 \Pf whose geodesic length tends to 0 in the sequence of hyperbolic
metrics on S2 \Pf obtained under iteration of Thurston’s pullback map on Teichmüller space.
This collection is a Thurston obstruction for f , and is uniquely determined up to isotopy.

Selinger’s characterization. Selinger [33] gave a purely topological description of the canon-
ical obstruction. For convenience, we state it only for the case of an obstructed topological
polynomial f .

If M is a multicurve in (R2, Pf ), the complementary components of M are the connected
components of R2 \ (M ∪ Pf ). Each such component is homeomorphic to a sphere with punc-
tures; these correspond precisely to the spheres of the noded surface obtained from (R2, Pf ) by
contracting the curves of M to points. A complementary component C is said to be periodic

if there exists a k ≥ 1 and a finite set Q ⊆ C so that C \ Q is isotopic to a component C̃ of
f−k(C) in R2 \ Pf (the elements of Q correspond to points of C that map to Pf and to closed
disks in C that map to other complementary components). The smallest such k is the period
of C.

Let C be a periodic complementary component of a multicurve M with period k, with C̃
the corresponding component of f−k(C), and with Q the required finite set in C as above. We

may restrict fk to obtain a covering map C̃ → C \Q. After identifying C̃ with C \Q via an

ambient isotopy of (R2, Pf ), we may consider the map C̃ → C as a covering map C \Q→ C.
By filling in all punctures in both C \Q and C we obtain a map fC : S2 → S2 called the first
return map for C.

Selinger’s characterization of canonical obstructions for post-critically finite branched covers
of S2 reduces to the following statement for topological polynomials: a Thurston obstruction
M for a post-critically finite topological polynomial f is the canonical obstruction Γf if and
only if it satisfies the following conditions:

(1) The first return map for each periodic complementary component of M is either a
homeomorphism or an unobstructed topological polynomial.

(2) No Thurston obstruction M ′ for f that is properly contained in M satisfies condi-
tion (1).

Note that the exterior complementary component E of a stable multicurve M is periodic under
(and in fact preserved by) f . If M is un-nested, then E can be viewed as a sphere with one
puncture at ∞ and one puncture for each curve of M , and the corresponding first return map
fE is a topological polynomial. Observe that fE maps punctures to punctures. Specifically, fE
maps the puncture corresponding to a curve c in M to the puncture corresponding to a curve
c′ in M if and only if f−1(c′) has a component isotopic to c.

4.2. Structure of the canonical obstruction. In this section we use Selinger’s characteri-
zation of the canonical obstruction in order to give a description of the canonical obstruction
in terms of Levy cycles, Proposition 4.1 below.

In order to state Proposition 4.1, we require several definitions. If f is an obstructed
topological polynomial, then we can view any Levy cycle (c1, . . . , ck) for f as a multicurve
in (R2, Pf ). The curves of a Levy cycle all surround the same number of marked points, and
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therefore a Levy cycle is an un-nested multicurve. More generally, a Levy multicycle for f is
any multicurve in (R2, Pf ) that can be expressed as a union of Levy cycles.

If L is a Levy multicycle for f , the invariant closure of L is the multicurve obtained from
the set of iterated preimages of curves in L, where an iterated preimage of a curve c is any
essential component of f−k(c) for any k ≥ 1; so that the result satisfies the definition of a
multicurve, we take only one curve from each isotopy class. Note that the invariant closure of
L contains L, since each curve of L is an iterated preimage of itself.

Central to our analysis going forward will be the Levy multicycles that are un-nested mul-
ticurves. We place a partial order on the set of un-nested Levy multicycles for an obstructed
topological polynomial f as follows. Given un-nested Levy multicycles L and L′ for f , we write
L � L′ if for each curve c of L there exists a curve c′ of L′ such that c is isotopic to a curve
that lies in the interior of c′. We say that an un-nested Levy multicycle L for f is outermost
if it is maximal with respect to �.

Proposition 4.1. Let f be an obstructed post-critically finite topological polynomial.

(1) The map f has a unique outermost un-nested Levy multicycle L.
(2) The invariant closure of L is the canonical obstruction for f .
(3) The canonical obstruction for f is an un-nested multicurve.

In order to prove Proposition 4.1 we first prove three preliminary results.

Proposition 4.2. Let L be an un-nested Levy multicycle for an obstructed topological poly-
nomial f . Then the invariant closure of L is an invariant, un-nested Thurston obstruction
for f .

Proof. Let M0 = L, and for each n ≥ 1 let Mn = λf (Mn−1) be the the lift of Mn−1 under f .
Since L is an un-nested Levy multicycle, each curve of M0 is isotopic to a curve of M1, so
without loss of generality we may assume that M0 ⊆ M1, and indeed that Mn−1 ⊆ Mn for
all n ≥ 1. As such, the union M =

⋃
n≥0Mn is precisely the invariant closure of L. But a

multicurve in (R2, Pf ) consists of at most |Pf | − 2 curves, so the sequence

M0 ⊆M1 ⊆M2 ⊆ · · ·

eventually stabilizes and therefore M = MN for some sufficiently large N .
Now, since M0 is un-nested and the lift of an un-nested multicurve is un-nested, each of the

multicurves Mn is un-nested, and hence M is as well. Note also that M is invariant and hence
stable. Since M contains each of the Levy cycles of L, it is a Thurston obstruction for f . �

We will need some basic information about the structure of un-nested Levy multicycles.

Proposition 4.3. Let L be an un-nested Levy multicycle for an obstructed topological polyno-
mial f . Then:

(1) L can be expressed uniquely as a disjoint union of Levy cycles.

(2) If c is a curve of the invariant closure of L, then c is isotopic to a curve of L if and
only if some iterated preimage of c is isotopic to c.

Proof. Let M be the invariant closure of L, and consider the directed graph with one vertex
for each component of M , with a directed edge from c to c′ if f−1(c′) has a component isotopic
to c. By Proposition 4.2, M is un-nested. Therefore, no two edges in the graph have the same
initial vertex. It follows that the graph consists of finitely many directed cycles (the Levy
cycles of L) together with finitely many directed trees that feed into the cycles. Statements
(1) and (2) follow immediately. �
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Proposition 4.4. Let f be an obstructed topological polynomial, let L be an un-nested Levy
multicycle for f , and let M be the invariant closure of L. Then M is the canonical obstruction
for f if and only if the first return map for the exterior complementary component of M is
unobstructed.

Proof. The forward direction follows immediately from Selinger’s characterization. For the
converse, suppose that the first return map for the exterior complementary component is un-
obstructed. We know from Proposition 4.3(2) that the only bounded periodic complementary
components of M are the the interiors of the curves of L, and since L is a union of Levy
cycles the first return map for each such component is a homeomorphism (if the degree of the
first return map were greater than 1, then the restriction of f to some curve of L would not
have degree 1, and so L would not be a Levy multicycle). Thus M satisfies condition (1) of
Selinger’s characterization.

For condition (2) of Selinger’s characterization, let M ′ be any f -stable multicurve that is
properly contained in M . Then M ′ cannot contain all of L, and indeed there must be a Levy
cycle L0 ⊆ L whose curves are completely absent from M ′. Then L0 is a Levy cycle for the
first return map corresponding to the exterior complementary component of M ′, so M ′ fails to
satisfy condition (1) of Selinger’s characterization. We conclude that M satisfies condition (2),
so M is the canonical obstruction. �

Lemma 4.5. Let L and L′ be distinct Levy cycles for an obstructed topological polynomial f .
If L ∪L′ is a multicurve, then exactly one of the following holds: L � L′, L′ � L, or L ∪L′ is
un-nested. Moreover, these three cases are mutually exclusive.

We emphasize that Lemma 4.5 is only stated for Levy cycles, not for Levy multicycles.

Proof of Lemma 4.5. Suppose L∪L′ is not un-nested, so without loss of generality some curve c
of L lies in the interior of some curve c′ of L′. Say that L′ consists of the curves c′ = c′0, . . . , c

′
k−1,

in that order. Since L′ is a Levy cycle we have for every i ≥ 0 a unique component ci of f−i(c)
that lies in the interior of c′j , where j ≡ i mod k, and moreover each ci maps to ci−1 with

degree 1. As the invariant closure of c is finite, the set of ci forms a Levy cycle L′′. By
construction, L′′ � L′. By Proposition 4.3(1) the curve c can lie in at most one Levy cycle,
and so L′′ is equal to L. The lemma follows. �

We are now ready to prove our main characterization of the canonical Thurston obstruction.

Proof of Proposition 4.1. Note first that if L1 � L2 are distinct un-nested Levy multicycles
for f , then either

(1) the curves of L2 enclose more marked points than the curves of L1, or

(2) L2 has fewer curves than L1.

It follows that there are no infinite ascending chains L1 � L2 � L3 � · · · of distinct un-nested
Levy multicycles, so f must have at least one un-nested Levy multicycle L that is maximal
under �.

Let M be the invariant closure of L. We claim that M is the canonical obstruction for f .
The uniqueness of L follows from this, since by Proposition 4.3(2) we can recover L from M
by taking the components of M that have an iterated preimage isotopic to themselves.

By Proposition 4.4, it suffices to prove that the first return map fE for the exterior com-
plementary component E of M is unobstructed. Suppose to the contrary that the first return
map for the exterior component has a Levy cycle LE in E. Then LE is also a Levy cycle for
f , and it does not intersect any of the curves of L. Moreover, since the curves of LE are essen-
tial in E, no curve of LE can be isotopic to a curve of L in (R2, Pf ). By Proposition 4.3(1),
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we can express L as a disjoint union of Levy cycles. Let L′ be the multicurve obtained by
taking the union of LE together with all Levy cycles of L that do not fit inside of LE . By
Lemma 4.5 the multicurve L′ is un-nested, and is therefore an un-nested Levy multicycle. But
L′ is distinct from L and L � L′, which contradicts the maximality of L. We conclude that
fE is unobstructed, so M must be the canonical obstruction. �

4.3. The Hubbard vertex. The goal of this section is to define the Hubbard vertex for an
obstructed topological polynomial and describe some basic properties of it that will be used
in the proof of the second statement of Theorem 1.1. Specifically, we prove Proposition 4.6,
which states all iterates of a given obstructed topological polynomial have the same Hubbard
vertex. We then prove Proposition 4.7, which is an analogue of Proposition 3.5 in that it gives
a variant of Poirier’s conditions for obstructed maps. Finally, we prove Lemma 4.8, which is
an analogue of Lemma 3.11.

We begin with the definition of the Hubbard vertex. If f is an obstructed topological
polynomial, the canonical obstruction Γf is un-nested by Proposition 4.1. Moreover, the
first return map fE for the exterior component is an unobstructed topological polynomial
by Selinger’s characterization of the canonical obstruction, so fE has a topological Hubbard
tree T . As in Section 2, the pair (Γf , T ) specifies a bubble tree Bf in (R2, Pf ), which we refer
to as the Hubbard bubble tree for f . (Like the topological Hubbard tree, the Hubbard bubble

tree is only defined up to isotopy.) The associated vertex of the augmented complex T̂n (where
n = |Pf |) is the Hubbard vertex for f , which we denote Hf .

Proposition 4.6. If f is an obstructed topological polynomial, the Hubbard bubble tree for any
iterate of f is the same as the Hubbard bubble tree for f .

Proof. Selinger proved that the canonical obstruction for any iterate fk of f is the same as the
canonical obstruction for f [33, Proposition 3.3]. Furthermore, if fE is the first return map for
f on the exterior complementary component of Γf , then fkE is (up to isotopy) the first return

map for fk on that component. Since the topological Hubbard tree T for fkE is the same as

the topological Hubbard tree for fE , the Hubbard bubble trees for f and fk are the same. �

Our next goal is to establish an analogue of Poirier’s conditions for Hubbard bubble trees
and prove that we can get from an arbitrary invariant tree to the Hubbard vertex through
a forest expansion followed by a forest collapse. The general outline is the same as for the
unobstructed case in Section 3.

Let f be a topological polynomial. We say that a bubble tree B is invariant under f if
λf (B) = B. If we specify B by a pair (M,T ), then (M,T ) is invariant if the multicurve M
is invariant under f and T is an invariant tree for the first return map fE on the exterior
complementary component of M . For example, the Hubbard bubble tree for an obstructed
topological polynomial f is an invariant bubble tree.

If B is a bubble tree with multicurve M , then as above we refer to the curves of M as
bubbles. In the case where B is invariant under f , we say that a bubble c is periodic if the
corresponding marked point is periodic under the first return map for the exterior, i.e. if some
component of some iterated preimage of c is isotopic to c. We say that a bubble c is critical if
the corresponding puncture is critical under the first return map, i.e. if the curve of f−1(M)
isotopic to c maps to its image with degree two or greater.

As with invariant trees, every invariant bubble tree B with exterior tree T has a dynamical
map f∗ : T → T , namely the dynamical map on T determined by fE . We say that B satisfies
the angle condition and expanding condition, respectively, if T satisfies the corresponding
condition with respect to (fE)∗.
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Proposition 4.7. Let f be a post-critically finite topological polynomial, and let B be an
invariant bubble tree for f . Then B is the Hubbard bubble tree for f if and only if it satisfies
the following conditions:

(1) B satisfies the angle condition and the expanding condition, and

(2) no periodic bubble of B is critical.

Proof. Let M be the multicurve of B, let TE be the exterior tree, and let fE be the first return
map for the exterior complementary component of M .

Suppose first that B is the Hubbard bubble tree for f . Then TE is a topological Hubbard tree
for fE , so TE satisfies the angle and expanding conditions by Proposition 3.5. Furthermore,
since M is the canonical obstruction, by Proposition 4.1 it is the invariant closure of the
outermost Levy cycle for f . Then every periodic bubble of M must be part of a Levy cycle by
Proposition 4.3(2), and therefore no periodic bubble of M is critical.

For the converse, suppose that B satisfies the two conditions in the statement of the propo-
sition, and let L be the set of all periodic bubbles in M . Since no bubble of L is critical and
L is un-nested, it is an un-nested Levy multicycle, and M is the invariant closure of L. Since
B satisfies condition (1), it follows from Proposition 3.5 that TE is a topological Hubbard
tree for fE , and therefore fE is unobstructed. By Proposition 4.4, we conclude that M is the
canonical obstruction for f , and therefore B is the Hubbard bubble tree for f . �

If T is any tree and F ′ is a subforest of T that is not collapsible (meaning that some
component of F ′ contains more than one marked point), then the quotient T/F ′ may be
regarded as a bubble tree, with one bubble for each connected component of F ′ that has more
than one marked point. Say that F ′ is invariant under f if it is equal to its lift under f . If T
is an invariant tree for a post-critically finite topological polynomial f , then T/F ′ corresponds
to an invariant bubble tree for f if and only if F ′ is an invariant subforest of T .

Lemma 4.8. Let f be an obstructed post-critically finite topological polynomial, and let T be
an invariant tree for f that satisfies the angle condition. Let F be the union of all periodic
Julia edges of T , and let F ′ be the smallest invariant subforest of T containing F . Then T/F ′

is the Hubbard vertex for f .

Proof. Let T/F ′ be the bubble tree obtained from T by collapsing the subforest F ′, and
note that the bubbles of T/F ′ correspond precisely to the simple closed curves that surround
components of F ′ that have more than one marked point. As in the proof of Lemma 3.11,
no connected component of F has any critical points, and the connected components of F
are precisely the periodic connected components of F ′. It follows that T/F ′ has no critical
periodic bubbles. As in the proof of Lemma 3.11, the bubble tree T/F ′ satisfies the expanding
condition, and as in the proof of Proposition 3.6 it also satisfies the angle condition, so T/F ′

is the Hubbard vertex by Proposition 4.7. �

We remark that unobstructed topological polynomials also may have invariant bubble trees
that are not trees. For instance, the tuning of the basilica polynomial with itself has an
invariant bubble tree; condition (2) of Proposition 4.7 fails for this tree.

4.4. Canonical form. In this section we explain how to use the Hubbard bubble tree to give
a complete topological description of an obstructed topological polynomial. We will refer to
this description as the canonical form for an obstructed map. The canonical form will not be
used in our proof of Theorem 1.1; rather, it will be used in our discussion of twisted z2 + i
problems in Sections 5.3 and 5.4.
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Let f be an obstructed topological polynomial with post-critical set P = Pf . Let B = Bf
be the Hubbard bubble tree for f . Let ∆ be the union of the closed disks whose boundaries
are the curves of the canonical obstruction Γf . Let BE be the exterior forest for B.

Let Qint be the set of marked points in the interior of ∆, let Qbd be the set of points of
∂∆ ∩BE , and let Q = Qint ∪Qbd. We regard Q as the set of marked points of ∆.

Let ∆̃ = f−1(∆), and let Q̃ = f−1(Q). Then f restricts to an interior map

fI : (∆̃, Q̃)→ (∆, Q).

The interior map fI can be decomposed into a disjoint union of maps between closed disks.

Specifically, if ∆̃1, . . . , ∆̃m are the components of ∆̃ and ∆1, . . . ,∆n are the components of ∆,

then fI must map each ∆̃i to some ∆j , so we can decompose fI into a collection of maps

fij : (∆̃i, Q̃ ∩ ∆̃i)→ (∆j , Q ∩∆j).

Each fij is either a homeomorphism or a branched cover whose critical values are marked.
In particular, since no critical bubble of a Hubbard bubble tree is periodic, fij must be a

homeomorphism whenever ∆̃i is periodic under f .

Let B̃E = f−1(BE). By the Alexander method, the induced map B̃E → BE determines up

to homotopy the restriction of f on the complement of the closed set ∆̃; we refer to this map
as the exterior map fE of f . We have the following immediate consequence.

Proposition 4.9. Let f be a post-critically finite topological polynomial, and let fI and fE be
the interior and exterior maps for f . Then f is determined up to homotopy relative to f−1(Pf )

by the homotopy class of the map fE together with the homotopy class of fI relative to Q̃.

We refer to the pair (fE , fI) as the canonical form for f . As in the statement of the

proposition, we consider fI to be defined up to homotopy relative to Q̃.
The canonical form presented here is analogous to the Nielsen–Thurston normal form for

mapping class groups; see [11, Corollary 13.3]. In general, the Nielsen–Thurston normal form is
not canonical (for instance if f = f1f2, where f1 and f2 are supported on disjoint subsurfaces,
each with a boundary component homotopic to the curve c, then we may also write f as
f = (f1Tc)(T

−1
c f2)). On the other hand, the maps fE and fI in Proposition 4.9 are canonical.

A similar canonical form exists for braid groups; see the paper by the third author with Chen
and Kordek [6, Section 6].

4.5. Proof of the theorem. Like the proof of the first statement of Theorem 1.1, the proof
of the second statement has two main steps. In order to describe the steps, we require two
definitions. In what follows, let f be an obstructed post-critically finite topological polynomial.

First, we denote by Gf the stabilizer of the Hubbard vertex Hf in PMod(R2, Pf ). This
is exactly the subgroup of PMod(R2, Pf ) consisting of elements supported in the interiors
of the components of the canonical obstruction Γf . Next, we say that a vertex T of Tn is
invariant-modulo-Gf under a map ψ : Tn → Tn if there is a g ∈ Gf so that ψ(T ) = g · T .

The two steps of the proof are:

(1) for each vertex T of Tn, some λkf (T ) is invariant-modulo-Gf under some power of λf ,
and

(2) if a vertex T of Tn is invariant-modulo-Gf under a power of λf then there is a vertex
of Lf that is obtained from T by a forest expansion.

As in Section 3.4, we handle the second step in a separate proposition before proving the
theorem.
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Proposition 4.10. Let f be an obstructed post-critically finite topological polynomial, let n =
|Pf |, and let T be a vertex of Tn that is invariant-modulo-Gf under λf . Then there is a vertex
of the canonical Levy set Lf ⊆ Tn that is obtained from T by a forest expansion.

Proof. By hypothesis, there exists g ∈ Gf so that λf (T ) = g ·T . It follows that g−1 ·λf (T ) = T
and so λfg(T ) = T , i.e. T is an invariant tree for the map fg. Since g is supported on
the interiors of the curves of the canonical obstruction Γf , the maps f and fg induce the
same first return map fE on the exterior complementary component of Γf , so it follows from
Proposition 4.7 that fg has the same Hubbard vertex as f .

By Proposition 3.6, there is a forest expansion T ′ of T that is invariant and satisfies the
angle condition with respect to fg. Since fg is obstructed, it follows from Lemma 4.8 that
the Hubbard vertex Hfg, hence Hf , it obtained from T ′ by a forest collapse. Therefore T ′ lies
in Lf . �

Proof of Theorem 1.1(2). As in the statement, let f be an obstructed post-critically finite
topological polynomial and let n = |Pf |. Let T0 be a vertex of Tn.

Since the lifting map λf : T̂n → T̂n fixes the Hubbard vertex Hf , it follows that λf induces

a simplicial map on the “partially augmented tree complex” T•n which is the subcomplex of T̂n
spanned by Tn ∪Hf .

Since Gf fixes Hf , it follows that Gf acts on T•n. The quotient T•n/Gf is a locally finite cell
complex. Indeed, the only vertex of T•n that is not locally finite is Hf , and the action of Gf on

the set of edges incident to Hf is cofinite. This is because the quotient of T̂n by PMod(R2, Pf )
is finite, and two cells incident to Hf are in the same orbit under the stabilizer Gf if and only
if they are in the same orbit under PMod(R2, Pf ).

Let π : T•n → T•n/Gf denote the quotient map. We consider the sequence of vertices Ti =
λif (T0) and the corresponding sequence π(Ti) in T•n/Gf . As in the proof of Theorem 1.1(1),

we may use the local finiteness of T•n/Gf , the fact that T•n is connected, and the fact that λf
is simplicial to conclude that the sequence π(Ti) is either periodic or pre-periodic.

Thus, there is an m ≥ 0 and an r > 0 so that

π(λmf (T0)) = π(λm+r
f (T0)).

Let T = λm(T0). The previous equality can be restated as follows: there exists a g ∈ Gf so
that

λfr(T ) = g · T.
We thus have g−1 ·λfr(T ) = T , which means that λfrg(T ) = T . By Proposition 4.10, there is a
vertex of Lfrg that is obtained from T by a forest expansion. Since Lf = Lfr by Proposition 4.6
and since g preserves Lf we have that Lfrg = Lf . The theorem now follows. �

Refinements of Theorem 1.1. Our proof of Theorem 1.1 gives more information than what is
given by the statement. We give here two successive refinements that are immediate from the
proof.

Let X be a set of vertices of T̂n. We define E(X) to be the subset of Tn consisting of all
vertices obtained from an element of X by performing a forest expansion. Similarly, we define
C(X) to be the subset consisting of vertices obtained by performing a forest collapse along a
collapsible forest. We write CE(X) for C(E(X)).

Our proof of Theorem 1.1 shows that the nucleus for an unobstructed f is contained in
CE(Hf ) and that the nucleus for an obstructed f is contained in C(Lf ), hence in CE(Hf ).
This is the first of the two refinements of Theorem 1.1.
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Consider, for example, the rabbit, co-rabbit, and airplane polynomials. As shown in Figure 1,
the minimal nuclei for the rabbit and co-rabbit polynomials are equal to the corresponding sets
CE(HR) and CE(HC). On the other hand, the minimal nucleus for the airplane polynomial
is strictly smaller than CE(HA): it is equal to {HA}. And so for all three polynomials, the
refinement gives an improvement over what is stated in Theorem 1.1(1), but for the airplane
polynomial the first refinement does not give the minimal nucleus.

As for our obstructed example D−1
a I, we have that E(HD−1

a I) is equal to the given nu-

cleus (the Levy set), and that CE(HD−1
a I) is strictly larger. In fact, CE(HD−1

a I) is the 1-

neighborhood of the Levy set, which is the nucleus guaranteed by Theorem 1.1(2). In other
words, for this example, the first refinement does not improve upon Theorem 1.1(2).

In order to state our second refinement, let f be a post-critically finite topological polynomial

and let Hf be the Hubbard vertex for f in T̂n. We define E′(Hf ) to be the subset of Tn
consisting of all vertices that are obtained from Hf by performing expansions at the Julia
vertices. For each vertex of E′(Hf ) we may then collapse any collection of edges that correspond
to non-Julia edges in Hf and that form a collapsible forest; we denote by C ′E′(Hf ) the set of
all vertices obtained in this way. For any f we have C ′E′(Hf ) ⊆ CE(Hf ).

The second refinement of Theorem 1.1 is that C ′E′(Hf ) is a nucleus for f . For the rabbit
polynomial we have that C ′E′(HR) is again equal to the minimal nucleus since C ′E′(HR) ⊆
CE(HR) and since CE(HR) was already equal to the minimal nucleus (and similarly for the
co-rabbit polynomial). As for the airplane polynomial, there are no Julia vertices in HA, and
there are no edges that can be contracted, either, and so the minimal nucleus {HA} is equal
to C ′E′(HA). So in all three of these cases C ′E′(Hf ) is exactly the minimal nucleus. There
are, on the other hand, examples of unobstructed topological polynomials, such as the rabbit
polynomial tuned with the basilica polynomial, where the minimal nucleus is strictly smaller
than C ′E′(Hf ).

For the obstructed example D−1
a I, the set C ′E′(HD−1

a I) is equal to the nucleus given in the

introduction (the Levy set). And so for this example, the second refinement is an improvement
over what is given by Theorem 1.1(2).

5. Twisted polynomial problems

The goal of this section is to give concrete applications of our tree lifting algorithm. A
feature of our methods is that they allow us to readily discover and give unified arguments for
infinitely many recognition problems, with arbitrary numbers of post-critical points.

We begin in Section 5.1 by applying our methods to solve Hubbard’s original twisted rabbit
problem, first solved by Bartholdi–Nekrashevych. Then in Section 5.2 we explain a general-
ization of this problem to a family of rabbit polynomials with arbitrarily many post-critical
points, which we call the twisted many-eared rabbit problem.

In Section 5.3 we use our methods to solve another twisted polynomial problem where the
rabbit polynomial is replaced by the polynomial z2 + i; again this was originally solved by
Bartholdi–Nekrashevych. Finally in Section 5.4 we give a generalization of this problem to a
family of polynomials with arbitrarily many post-critical points. As in the introduction, an
important distinction between the twisted rabbit problems and the twisted z2 + i problems is
that in the latter case the twisted polynomials are sometimes obstructed.

5.1. The original twisted rabbit problem. It follows from the Berstein–Levy theorem
that if we post-compose the rabbit polynomial R with an element of PMod(R2, PR) the result
is Thurston equivalent to either R, the co-rabbit polynomial C, or the airplane polynomial
A. Let x be the curve in (R2, PR) shown in Figure 15, and let Dx denote the Dehn twist
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(a) (b)

Figure 15. (a) The Julia set for R. (b) The curves x, y, and z in (R2, PR)

about x (as in the introduction, we take Dehn twists to be left-handed in this paper). In this
figure, and in each of the figures that follow, circled marked points are the critical points.
(Bartholdi–Nekrashevych denote Dx by T and Dz by S.)

The original twisted rabbit problem of Hubbard is:

Let m ∈ Z. To which polynomial is Dm
x R Thurston equivalent?

Bartholdi–Nekrashevych give an algorithm [2, Theorem 4.8] that computes the Thurston
equivalence class of gR for any g ∈ PMod(R2, PR). They also give a closed-form answer for
the equivalence class of Dm

x R, showing that this can be read off from the 4-adic expansion of
m [2, Theorem 4.7]. Specifically, they show that

Dm
x R '


A if the 4-adic expansion of m contains a 1 or a 2

R if the 4-adic expansion of m contains only 0’s and 3’s and m ≥ 0

C if the 4-adic expansion of m contains only 0’s and 3’s and m < 0.

Here and throughout this section, we will use the symbol ' to denote Thurston equivalence.

The basic strategy. Following Bartholdi–Nekrashevych, the basic strategy for our solution to
the twisted rabbit problem has two parts.

(1) Give a set of reduction formulas that allow us to simplify Dm
x R to one of the “base

cases,” where m ∈ {−1, 0, 1}.
(2) Determine the base cases by showing that DxR ' A and D−1

x R ' C.

With these two steps in hand, it is straightforward to deduce the formula for Dm
x R in terms

of 4-adic expansions. Before explaining the first step, we describe our main tool for producing
the reduction formulas.

Figure 16. The Hubbard trees for R, A, and C
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Lifting and lifting by borrowing. Let f be a topological polynomial with post-critical set P .
There is an equivalence relation on PMod(R2, P ) defined as follows: g1 ∼ g2 if g1f ' g2f . Our
goal here is to give a procedure for replacing a given g ∈ PMod(R2, P ) with another equivalent
(and hopefully simpler) one.

We require some preliminaries. Let h : (R2, P ) → (R2, P ) be a homeomorphism that

fixes P pointwise. We say that h is liftable through f if there is a homeomorphism h̃ :
(R2, P ) → (R2, P ) that fixes P pointwise and satisfies fh̃ = hf . The liftable mapping class
group LMod(R2, P ) is the subgroup of PMod(R2, P ) consisting of elements with representatives
that are liftable through f . We emphasize here that LMod(R2, P ) depends on f ; it will be
clear from context which topological polynomial is being used to define LMod(R2, P ). Also
associated to f there is a homomorphism

ψ : LMod(R2, P )→ PMod(R2, P )

given by lifting through f . The following lemma is due to Bartholdi–Nekrashevych. They
did not state it in exactly this form (for instance they only discuss the case of the rabbit
polynomial), but the proof is the same [2, Proposition 4.1].

Lemma 5.1. Let f be a post-critically finite topological polynomial. Let g ∈ PMod(R2, P ) and
let h ∈ PMod(R2, P ) be any element with h−1g ∈ LMod(R2, P ). Then

g ∼ ψ(h−1g)h.

When g already lies in LMod(R2, P ), we may take h = id in Lemma 5.1, and we obtain the
following special case:

g ∼ ψ(g).

In words, g is equivalent to the lift of g. The more general case of Lemma 5.1 can be phrased
as: g is equivalent to the mapping class obtained by the process of “lifting by borrowing.”

Proof of Lemma 5.1. Since h−1g lies in LMod(R2, P ), we may apply the map ψ to obtain the
lift ψ(h−1g) of h−1g under f . By the definition of a lift we have h−1gf = fψ(h−1g). Composing
both sides of this equality with h we obtain

fψ(h−1g)h = h−1gfh.

Conjugation by PMod(R2, P ) preserves the Thurston equivalence class. So after conjugating
the left side of the above equality by ψ(h−1g)h and the right side by h we obtain that

ψ(h−1g)hf ' gf,
as desired. �

An additional difference between our Lemma 5.1 and the corresponding statement in the
work of Bartholdi–Nekrashevych is that they fix once and for all a set of coset representatives
for LMod(R2, P ), and they always take h to lie in this set of coset representatives. As a result,
they obtain a well-defined set map ψ̄ : PMod(R2, P )→ PMod(R2, P ).

A topological description of the rabbit polynomial. We will now use the Alexander method
(Proposition 3.3) to give a combinatorial description of a topological polynomial that is ho-
motopic to the rabbit polynomial. We will use this substitute when computing the lifts of
curves, so that the lifting operation can be carried out by means of combinatorial topology,
rather than through an actual analytic map. The topological description is a composition of a
topological polynomial and a homeomorphism; we think of this description as being analogous
to a decomposition of a mapping class into a product of Dehn twists. In what follows we denote
by P the post-critical set of R and we denote by ∆ the triangle in R2 with vertex set P .
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Let Sq be any orientation-preserving double branched cover (R2, P ) → (R2, P ) that is
branched over 0, and that fixes ∆ pointwise. Any such map fixes the isotopy class of any
tree contained in ∆. Thus, it follows from Proposition 3.3 that all such double covers are
homotopic relative to P , so there is no ambiguity.

Next, let Rot be a homeomorphism of (R2, P ) that rotates the points P counterclockwise
and preserves ∆ as a set. Again, any two such maps are homotopic relative to P (here we can
even apply the Alexander method for mapping class groups).

We claim that the map Rot Sq is homotopic to the rabbit polynomial relative to P . This
can be seen by applying Proposition 3.3 to the two maps Rot Sq and R. One convenient tree
to use is the tripod contained in ∆.

Basic facts about mapping class groups. Below, we will frequently use without mention the
following basic facts from the theory of mapping class groups. First, we have necessary and suf-
ficient conditions for a power of a Dehn twist to lie in the group LMod(R2, P ) for a topological
polynomial f of degree 2, and we also have descriptions of the lifts:

(1) Dc lifts if and only if f−1(c) has two components c̃1 and c̃2; in this case ψ(Dc) = Dc̃1Dc̃2 ,
and

(2) D2
c lifts if f−1(c) has one component c̃; in this case ψ(D2

c ) = Dc̃.

We will also use the formula

hDch
−1 = Dh(c)

for any h,Dc ∈ PMod(R2, P ). Finally, we will also use several applications of the lantern
relation

DxDyDz = id

where x, y, and z are the curves in Figure 15.

A triviality lemma. It will be useful in our resolution of the twisted rabbit problem and the
twisted many-eared rabbit problem to have a condition under which a power of a Dehn twist
lifts through a polynomial to the trivial mapping class. We require some preliminaries. Let f
be a topological polynomial of degree 2. First, a branch cut will mean any arc b in (R2, Pf )
that connects the critical value to ∞. The preimage f−1(b) is a pair of arcs in (R2, Pf ) that
connect the critical point to ∞ and that intersect only at the critical point. We say that b is
special if all of the points of Pf lie on one side of f−1(b). Each point of Pf that is not the
critical value has two preimages, one in Pf and one not in Pf . Necessarily the marked and
unmarked preimages lie on opposite sides of f−1(b).

Next, suppose c is a curve in (R2, Pf ) that surrounds exactly two points p1 and p2 of Pf .
Then c is the boundary of a neighborhood of an arc a in (R2, Pf ) connecting p1 to p2; we refer
to a as a defining arc for c. The defining arc a is well defined up to isotopy.

Lemma 5.2. Let f be a topological polynomial of degree 2 and let b be a special branch cut for
f . Suppose c is a curve in (R2, Pf ) that surrounds exactly two points of Pf , neither of which
is the critical value, and that a is a defining arc for c. If a is transverse to b and crosses b in
an odd number of points, then the lift of Dc is trivial.

Proof. Since c does not surround the critical value of f , the arc a does not have an endpoint
at the critical value. Therefore f−1(a) is a pair of arcs that are disjoint, including at their
endpoints. Since a intersects b in an odd number of points, the endpoints of each component
of f−1(a) lie on opposite sides of f−1(b). Since b is a special branch cut, it follows that each
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−→

Figure 17. The curve D−1
x (y) and its lift λSq Rot−1(D−1

x (y))

component of f−1(a) connects a point of Pf to a point of f−1(Pf ) \ Pf . The lift ψ(Dc) is
equal to the product of the Dehn twists about the curves of the boundary of a neighborhood
of f−1(a). Since each such curve surrounds only one point of Pf , this product is trivial. �

A convenient notation. Let f be a topological polynomial and let LMod(R2, P ) and ψ be the
associated liftable mapping class group and homomorphism. We will use the notation

g1
h
 g2

to mean that g2 = ψ(h−1g1)h (the element h above the arrow lies in the coset g1 LMod(R2, P )

as in Lemma 5.1). We emphasize that, by Lemma 5.1, we have that g1
h
 g2 implies g1 ∼ g2.

When h = id we write g1  g2. In such a case, since ψ is a homomorphism on LMod(R2, P )
we have gk1  gk2 for any k. While the arrow notation g1  g2 belies the fact that g1 and g2

are equivalent, it is on the other hand meant to suggest a simplification process.

Reduction formulas. We are now ready to explain the first of the two steps in our solution to
the twisted rabbit problem. The reduction formulas of Bartholdi–Nekrashevych are:

Dm
x R '


Dk
xR m = 4k

DxR m = 4k + 1

DxR m = 4k + 2

Dk
xR m = 4k + 3.

We give here our version of the Bartholdi–Nekrashevych calculations that justify the reduc-
tion formulas [2, Section 4]. Our calculations in Section 5.2 will be modeled on these. Our
arguments are much shorter than the corresponding ones by Bartholdi–Nekrashevych; where
they use iterated monodromy groups to compute the lifts of Dehn twists, we simply lift the
corresponding curves.

To begin, we observe the following facts. In what follows, let y and z be the curves in
(R2, P ) shown in Figure 15. The curve z has two curves in its preimage under R, and the only
essential one is homotopic to x. Therefore, as above, Dz lies in LMod(R2, P ) and ψ(Dz) = Dx;
we may write this as Dz  Dx. The preimage of x has a single component, isotopic to y.
Therefore Dx does not lie in LMod(R2, P ), but D2

x does and ψ(D2
x) = Dy, or D2

x  Dy.
Similarly D2

y  Dz. Finally, it follows from Lemma 5.2 that DD−1
x (z)  id; the special branch

cut here is the straight ray from the critical value to ∞ that avoids the interior of the triangle
determined by P .

Case 1: m = 4k. In this case we have

D4k
x = (D2

x)2k  D2k
y = (D2

y)
k  Dk

z  Dk
x.



RECOGNIZING TOPOLOGICAL POLYNOMIALS BY LIFTING TREES 43

D−1
x−−−→ Rot−1

−−−−−→
λSq−−→ =

Figure 18. An invariant tree for DxR

Thus D4k
x ∼ Dk

x, as desired.

Case 2: m = 4k + 1. In this case we require one additional fact, namely that D2
D−1

x (y)
 Dz.

This follows from the fact that R−1(D−1
x (y)) has one component, namely z; see Figure 17. We

have

D4k+1
x

Dx D2k
y Dx

Dx Dk
zDx

Dx Dx.

Thus, D4k+1
x ∼ Dx, as desired.

Case 3: m = 4k + 2. In this case we have

D4k+2
x  D2k+1

y

D−1
y
 Dk+1

z D−1
y = Dk+2

z Dx
Dx Dx,

where the equality uses the lantern relation. Thus D4k+2
x ∼ Dx as desired.

Case 4: m = 4k + 3. In this case we have

D4k+3
x

Dx D2k+1
y Dx = D2k

y D
−1
x D−1

z Dx = D2k
y D

−1

D−1
x (z)

 Dk
z  Dk

x,

where in the first equality we used the lantern relation. Thus, D4k+3
x ∼ Dk

x, as desired.

The base cases. We now execute the second step of the solution to the twisted rabbit problem,
which is to show that DxR ' A and that D−1

x R ' C. Here we use the Alexander method in
place of the theory of iterated monodromy groups.

In the two base cases we replace Dm
x R with Dm

x Rot Sq. We further observe that

λDm
x Rot Sq = λSq Rot−1D−mx .

We begin with the case m = 1. The leftmost tree in Figure 18 is invariant under λSq Rot−1D−1
x .

Since there is no tree with 2 edges invariant under λR or λC (cf. Figure 1), we conclude that
Dx Rot Sq, hence DxR, is Thurston equivalent to A.

We now treat the casem = −1. The leftmost tree in Figure 19 is invariant under λSq Rot−1Dx,
and the action of D−1

x Rot Sq on the tree is a clockwise rotation (meaning that the half-edges
emanating from the vertex of degree 3 are permuted in the clockwise direction). Since the

Dx−−→ Rot−1

−−−−−→
λSq−−→ =

Figure 19. An invariant tree for D−1
x R
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D−1
x−−−→ Rot−1

−−−−−→
λSq−−→ =

Figure 20. Applying the tree lifting algorithm to find the Hubbard tree for DxR

nucleus for A contains no tripods, and since the invariant tree for R is rotated in the counter-
clockwise direction by R, it follows that D−1

x R is Thurston equivalent to C.

The hidden role of the tree lifting algorithm. Our approach to the base cases of the twisted
rabbit problem is very direct: to show the given Thurston equivalences, we simply produce the
correct topological Hubbard trees. But how would one guess the topological Hubbard trees?
The answer is not to guess, but to apply our tree lifting algorithm. For example, Figure 20
shows the image of HR under λDxR. So after a single iterate of the tree lifting algorithm,
we arrive at the Hubbard tree for DxR. Using the tree lifting algorithm is in fact how we
determined that these maps are equivalent in the first place. After the fact, however, this step
is not required for the proof.

Why 4-adic? We can see from our solution to the twisted rabbit problem why the 4-adic
expansion of the power m appears in the answer. In the derivation of the reduction formulas,
the lifting operation permutes the curves x, y, and z cyclically. Each time we lift an even
power of Dx or Dy, the power divides by 2, and when we lift a power of Dz, the power stays
the same. The reason is because x and y surround the critical value, while z does not. So when
repeatedly lifting a power of Dx that is divisible by 4, we “lose” a factor of 4 in the power for
every three iterations of the lifting map (as in Case 1 of the reduction formulas). We will see
the same phenomenon in our solution to the twisted many-eared rabbit problem below.

5.2. The twisted many-eared rabbit problem. In this section we pose and give a closed-
form answer to a generalization of the Hubbard’s twisted rabbit problem. To pose the problem,
we turn to the setting of post-critically finite topological polynomials f with |Pf | > 3.

Quadratic polynomials with periodic critical point. Consider the quadratic polynomials of the
form z2 + c where the unique critical point (namely, 0) is n-periodic. Denote this set PCn (the
PC stands for “periodic critical point”). For n = 3 we have PC3 = {R,C,A}. The cardinality
of PCn grows exponentially with n and its elements correspond to the solutions of 0 = pn(0)
that do not satisfy the same equation for any smaller value of n.

As in the case n = 3, it follows from the Berstein–Levy theorem that if we compose any
element f of PCn with an element of PMod(R2, Pf ) then the result is Thurston equivalent to
a polynomial and is in particular Thurston equivalent to an element of PCn.

The set of 1/n-rabbit polynomials. For each n ≥ 3 and 1 ≤ q < n relatively prime to n, there
is a polynomial in PCn called the q/n-rabbit polynomial. In this paper we will focus on the
1/n-rabbit polynomials, which we denote Rn. One description of Rn is that its address in
the Mandelbrot set is 1/n. Another description of Rn is that it is a quadratic polynomial
Rn(z) = z2 + c with the following properties: (1) the critical point 0 is n-periodic, (2) the
post-critical set lies on the boundary of a convex polygon ∆, (3) the Hubbard tree HRn is an
n-pod contained in ∆ (here, an n-pod is a tree with leaves at all n post-critical points and
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(a) (b)

Figure 21. (a) The Julia set and post-critical set of R6. (b) The curves ci for R6

with one unmarked vertex of degree n), and (4) the action of Rn on HRn is counterclockwise
rotation by 1/n; cf. Figure 21. We will give a combinatorial description of Rn below.

The 1/n-rabbit polynomial is sometimes called the (n− 1)-eared rabbit polynomial, so that
the 1/3-rabbit polynomial R3 is the usual rabbit polynomial and the 1/4-rabbit polynomial R4

is the 3-eared rabbit polynomial. (The so-called basilica polynomial z2−1 can be thought of as
the 1/2-rabbit polynomial R2, and the map z2 can be thought of as the 1/1-rabbit polynomial.)
The q/n-rabbit polynomial is described in the same way as the 1/n-rabbit polynomial, with
the 1/n-rotation replaced by a q/n-rotation. For example, the 2/3-rabbit polynomial is the
co-rabbit polynomial.

Statement of the problem. For each 1/n-rabbit polynomial Rn, we define xn to be the curve in
R2 obtained as the boundary of a regular neighborhood of the straight line segment between
Rn(0) and R2

n(0). For instance x6 is the curve shown in Figure 21.
We are now ready to state our twisted many-eared rabbit problem:

Let m ∈ Z. To which polynomial is Dm
xnRn Thurston equivalent?

The cases n = 1 and n = 2 are trivial, and the case n = 3 is Hubbard’s original problem.
In what follows we give a closed-form answer to the twisted many-eared rabbit problem for

n ≥ 4. Our analysis treats all n ≥ 4 with a single argument. As in Section 5.1, we proceed in
two steps, first producing reduction formulas and then computing base cases.

The answer. Before stating the answer to our twisted many-eared rabbit problem, Theorem 5.3
below, we need to describe the polynomials that appear. There are three sequences of poly-
nomials, An, Bn, and Kn, all defined for n ≥ 4 and lying in PCn. The polynomial An is the
real polynomial of period n that is furthest from the main cardioid of the Mandelbrot set. The
polynomial A4 is sometimes called the airbus polynomial, as it is a period 4 version of the
airplane polynomial A ∈ PC3. The polynomial Bn is the second furthest real polynomial of
period n from the main cardioid of the Mandelbrot set; the polynomial B4 is the tuning of the
basilica polynomial with the basilica polynomial (the other polynomials Bn are not tunings).
The polynomial K4 is sometimes called the Kokopelli polynomial. To each p/n-rabbit polyno-
mial, there is an associated Kokopelli polynomial that lies nearby in the Mandelbrot set; the
polynomial Kn is the Kokopelli polynomial associated to Rn. The polynomial Kn is given by
the complex kneading sequence (1 1 · · · 1 −1 ∗), where the symbol 1 appears n− 2 times.

Because of the Alexander method for quadratic polynomials (Proposition 3.3), the only
things we need to know about An, Bn, and Kn are the dynamical maps on their Hubbard
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Figure 22. The topological Hubbard trees for DxRn ' An, DyRn ' Kn, and
D−1
x Rn ' Bn

trees. The Hubbard trees are indicated in Figure 22. The dynamical maps on the Hubbard
trees are described below.

(An)∗(ei) =

{
e1e2 · · · en−1 i = 1

ei−1 2 ≤ i ≤ n− 1

(Kn)∗(ei) =


e2e3 i = 1

ei+1 2 ≤ i ≤ n− 1

e1e2 i = n

(Bn)∗(ei) =



e3 · · · en−1 i = 1

e1e2 i = 2

e1 i = 3

e2e3 i = 4

ei−1 5 ≤ i ≤ n− 1

Finally, in the statement of the theorem, the 4-free part of a nonzero integer m is m/4`,
where 4` is the largest power of 4 that divides m. We also define the 4-free part of 0 to be 0.

Theorem 5.3. Let n ≥ 4, let x = xn, and let m ∈ Z. Let m′ be the 4-free part of m. Then

Dm
x Rn '


Rn m′ = m = 0

An m′ ≡ 1 mod 4

Kn m′ ≡ 2 mod 4

Bn m′ ≡ 3 mod 4.

Our answer to the twisted many-eared rabbit problem can be put into a similar form to the
way Bartholdi–Nekrashevych phrased the answer to the original twisted rabbit problem: if the
first non-zero digit in the 4-adic expansion of m is 1, 2, or 3, then Dm

x Rn is Thurston equivalent
to An, Kn, or Bn, respectively; otherwise, if m = 0 then Dm

x Rn is Thurston equivalent to Rn.

Combinatorial description of the 1/n-rabbit polynomial. We will now give a combinatorial
topological description of a topological polynomial that is Thurston equivalent to Rn. In what
follows we denote by Pn the post-critical set of Rn.

Let Sqn be any double branched cover (R2, Pn)→ (R2, Pn) that is branched over 0 and fixes
pointwise the convex polygon ∆ determined by Pn. Also, let Rotn be a homeomorphism of
(R2, Pn) that rotates the points Pn counterclockwise and preserves ∆. As in Section 5.1, it
follows from the Alexander method (Proposition 3.3) that Rotn Sqn is homotopic to Rn relative
to Pn, hence is Thurston equivalent to Rn. (Similarly, the q/n-rabbit polynomial is homotopic
to Rotqn Sqn.)

Reduction formulas. The reduction formulas for the twisted many-eared rabbit problem are
similar to the reduction formulas for the original twisted rabbit problem. The main difference
is in the 4k + 3 case: in the original twisted rabbit problem, the power of Dx subtracts 3 and



RECOGNIZING TOPOLOGICAL POLYNOMIALS BY LIFTING TREES 47

−→

Figure 23. Left: the curve D−1
x (y); Right: its lift λRn(D−1

x (y)) = z

divides by 4, while here it immediately drops to −1. The underlying reason for the difference
in this case is that for n > 3 there are certain Dehn twists that arise in the calculation that
commute, while for n = 3 no two distinct Dehn twists commute.

Another difference to highlight is that the 4k+1 and 4k+2 cases reduce to different base cases
in the twisted many-eared rabbit problem, whereas for the original twisted rabbit problem,
they reduce to the same base case.

Throughout this section, let y = yn and z = zn be the curves shown in Figure 21.

Lemma 5.4. Let n ≥ 4, let x = xn, and let m ∈ Z. Then

Dm
x Rn '


Dk
xRn m = 4k

DxRn m = 4k + 1

DyRn m = 4k + 2

D−1
x Rn m = 4k + 3.

Proof. As in Section 5.1 we write g ∼ h if gRn ' hRn. As in the proof of the reduction formulas
for the original twisted rabbit problem, we begin by listing some basic formulas that will be
used in the four cases. Let Pn = PRn and let {c0, . . . , cn−1} be the cyclically ordered curves
in (R2, Pn) obtained by taking the boundary of a regular neighborhood of the straight line
segments between pairs of consecutive post-critical points (for R6, the curves c0, c1, c2, c3, c4, c5

are shown in Figure 21). The curves c0, c1, and c2 are xn, yn, and zn, respectively; in what
follows we refer to these curves as x, y, and z.

The basic formulas we will use are
D2
x  Dy

and
D2
y  Dz  Dc3  · · · Dcn−1  Dx.

We will treat the cases where m is equal to 4k, 4k + 1, 4k + 2, and 4k + 3 in turn. In the
second, third, and fourth cases, we will apply Lemma 5.2. The special branch cut is again the
straight ray from the critical value to ∞ that avoids the convex hull of Pn.

Case 1: m = 4k. In this case we have

D4k
x  D2k

y  Dk
z  Dk

c3  · · · Dk
cn−1
 Dk

x.

We conclude that D4k
x ∼ Dk

x, as desired.

Case 2: m = 4k + 1. In this case we require three new facts. The first fact is that

D2
D−1

x (y)
 Dz.
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Indeed, the curve D−1
x (y) and its preimage under Rn are shown in Figure 23. The second

fact is that D−1
x (cn−1)  id; this follows from Lemma 5.2. The third is that the Dehn twists

Dz, Dc3 , · · · , Dcn−2 all commute with Dx. With these facts in hand we have

D4k+1
x

Dx D2k
y Dx

Dx Dk
zDx

Dx Dk
c3Dx

Dx · · · Dx Dk
cn−1

Dx
Dx Dx.

Therefore we conclude that D4k+1
x ∼ Dx, as desired.

Case 3: m = 4k + 2. In this case we use the fact that DD−1
y (z)  id; again this follows from

Lemma 5.2. We thus have

D4k+2
x  D2k+1

y

Dy
 Dk

zDy
Dy
 Dy.

So D4k+2
x ∼ Dy, as desired.

Case 4: m = 4k+3. In this case we use two additional facts. The first is that DDx(y)  DDy(z)

(similar to Figure 23). The second is that DxDyDzD
−1
y D−1

x = DDxDy(z)  id; again this
follows from Lemma 5.2. We have

D4k+3
x

D−1
x D2k+2

y D−1
x

D−1
x DyD

2k+2
z D−1

y D−1
x

D−1
x D−1

x .

We conclude that D4k+3
x ∼ D−1

x , as desired. �

Base cases. To complete our solution to the twisted many-eared rabbit problem, it remains to
determine the base cases.

Proof of Theorem 5.3. It follows from Lemma 5.4 that when m 6= 0 the map Dm
x Rn is Thurston

equivalent to either DxRn, DyRn, or D−1
x Rn. It remains to check that DxRn, DyRn, and

D−1
x Rn are Thurston equivalent to An, Kn, and Bn, respectively. We may do this by applying

the Alexander method (Proposition 3.3) using the Hubbard trees and dynamical maps for An,
Kn, and Bn given above. �

More generalizations. Notice that because each of c2, c3, . . . , cn−1 lifts to x under iteration of
the lifting map for Rn, we have that Dm

ci ' D
m
x for all i 6= 1 and m ∈ Z. This means that our

solutions to the twisted rabbit problems of the form Dm
x Rn also immediately give solutions to

all twisted rabbit problems of the form Dm
ciRn with i ∈ {2, . . . , n− 1}.

5.3. Twisting z2 + i. In this section, we use our methods to recover results of Bartholdi–
Nekrashevych on twisting the polynomial I(z) = z2 + i by the elements of a particular cyclic
subgroup of PMod(R2, PI). In the case that the twisted map is obstructed, we give a com-
plete topological description, using the canonical form for topological polynomials from Sec-
tion 4.4. At the end of the section, we explain how to classify twistings by other elements of
PMod(R2, PI).

Let a, b, and c be the curves in (R2, PI) shown in Figure 25(a); these curves are situated
similarly as in the twisted rabbit problems, but we match notation for a and b with that of
Bartholdi–Nekrashevych (see [2, Section 6.3]).

The twisted z2 + i problem that we solve here is:

Let m ∈ Z. To which topological polynomial is Dm
b I Thurston equivalent?
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→

Figure 24. The Julia set and post-critical set for I = I3, as well as the topo-
logical Hubbard tree for I and its preimage. Preimages of marked points are
shown in white, and each edge labeled ẽi maps isomorphically to ei

We pose the problem using the twist about b rather than a or c, as this choice yields the most
interesting phenomena.

The Hubbard tree for I as well as its full preimage under I are depicted in Figure 24. This
pair of trees will play an analogous role in our calculations that the Rot Sq map played in
our calculations for the rabbit polynomial. Indeed, the data of the pair of trees suffices to
determine the lifts of trees and curves.

Recall from the introduction that Ī(z) = z2 − i. It follows from the work of Bartholdi–
Nekrashevych that the answer to the above twisted z2 + i problem is

Dm
b I '


I m ≡ 0 mod 4

D−1
b D−1

a I m ≡ 1 mod 4

D−1
a I m ≡ 2 mod 4

Ī m ≡ 3 mod 4.

The maps D−1
b D−1

a I and D−1
a I are obstructed; we describe them below.

Note that in their calculations, Bartholdi–Nekrashevych use right-handed Dehn twists for
twisting z2 + i, while they use left-handed Dehn twists for twisting the rabbit polynomial. We
will stay with our convention of using left-handed Dehn twists for twisting z2 + i; the reader
should be cognizant of this difference when comparing our answers and calculations to those
of Bartholdi–Nekrashevych.

(a) (b) (c)

Figure 25. (a) The curves a, b, and c in (R2, PI). (b) The topological Hubbard
tree for D−1

c I. (c) The Hubbard bubble tree for D−1
a I and D−1

b D−1
a I
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Reduction formulas. The reduction formulas for the twisted z2 + i problem are:

Dm
b I '


I m = 4k

D−1
b D−1

a I m = 4k + 1

D−1
a I m = 4k + 2

D−1
c I m = 4k + 3

We now justify the reduction formulas. We will use the following facts: D2
a  id, Db  Dc,

and D2
c  Da. We will also use the fact that the preimage of Dc(a) under I is a trivial curve.

We treat the four cases in turn.

Case 1: m = 4k. D4k
b  D4k

c  D2k
a  id.

Case 2: m = 4k + 1.D4k+1
b  D4k+1

c
D−1

c D2k+1
a D−1

c
D−1

a D−1
c D−1

a D−1
c = Db  Dc = D−1

b D−1
a .

Case 3: m = 4k + 2. D4k+2
b  D4k+2

c  D2k+1
a

D−1
a D−1

a .

Case 4: m = 4k + 3. D4k+3
b  D4k+3

c
D−1

c D2k+2
a D−1

c
D−1

c D−1
c .

Base cases. From the above topological description of I, we see that the dynamical map I∗ on
the Hubbard tree HI is

I∗(ei) =

{
e2e3e3 i = 1

ei−1 2 ≤ i ≤ 3.

The Hubbard tree for Ī is the reflection of HI across the x-axis, and the dynamical map Ī∗ is
the conjugate of I∗ by this reflection.

The Hubbard trees for I and Ī are both tripods. We can distinguish their Thurston equiva-
lence classes as follows: the polynomial I rotates two edges of its Hubbard tree in the counter-
clockwise direction and Ī rotates two of the edges of its Hubbard tree in the clockwise direction
(in both cases there is a third edge that gets stretched over three edges).

As per the reduction formulas, there are three base cases to consider: D−1
c I, D−1

a I, and
D−1
b D−1

a I. Figure 25(b) shows the topological Hubbard tree for D−1
c I; this tree lies in the

same Mod(R2, PI)-orbit as the trees for I and Ī. The map D−1
c I is Thurston equivalent to Ī

(and not I), since (D−1
c I)∗ rotates two of the edges in the clockwise direction.

The maps D−1
a I and D−1

b D−1
a I are both obstructed; we will describe them in terms of

the canonical form from Section 4.4. They each have the Hubbard bubble tree shown in
Figure 25(c). For each, the single curve b is the canonical Levy cycle; there is a single marked
point on the boundary of the closed Levy disk bounded by b where the exterior forest meets b.
And for each, the exterior map is Thurston equivalent to the polynomial z2 − 2, the unique
polynomial with the required portrait (up to affine equivalence). The Hubbard tree for z2 − 2
is an edge between two vertices.

For D−1
a I, the interior map on the closed Levy disk bounded by b is a left-handed half-twist.

As above, this can be seen from the computation of the lift under D−1
a I of a single tree. The

required calculation is shown in Figure 26.
For D−1

b D−1
a I, the interior map on the closed Levy disk bounded by b is a right-handed

half-twist. This is simply the induced interior map of D−1
a I post-composed by the mapping

class D−1
b .
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Da−−→ I−1

−−−→ =

Figure 26. A tree and a calculation of its lift under D−1
a I

5.4. Twisting the generalized z2 + i polynomials. In this section we define an infinite
family of polynomials In(z) with I3 = I and solve a generalization of the twisted z2 +i problem
from the previous section. We give a unified argument for all numbers of marked points n ≥ 4,
just as we did for the rabbit polynomial. As in that problem, the answer here for n ≥ 4 marked
points differs in character from the answer for n = 3.

A set of generalized z2 + i maps. For n ≥ 3, we define the polynomial In to be the polynomial
z2 + c, where c is the landing point of the external ray of the Mandelbrot set of angle 1

3

(
1

2n−2

)
.

Each polynomial In is a quadratic polynomial such that 0 is a preperiodic critical point, there
are n post-critical points, and the last two post-critical points form a 2-cycle. The Hubbard
tree for In, as well as its preimage under In, is indicated in Figure 27(b). As in Section 5.3,
we may regard the pair of trees in Figure 27(b) as a combinatorial description of In.

Statement of the problem. For each n we define n curves di in (R2, PIn) as shown in Figure 27(c)
for the case n = 5. For each n, set a = an = d0, b = bn = d1, and c = cn = dn−1.

The twisted generalized z2 + i problem is:

Let m ∈ Z. To which topological polynomial is Dm
b In Thurston equivalent?

The answer. In the answer to the generalized twisted z2 + i problem, there is only one poly-
nomial, namely In, and one obstructed topological polynomial, D−1

c In. We give the canonical
form for D−1

c In below.

Theorem 5.5. Let n ≥ 4 and let m ∈ Z. Then

Dm
b In '

{
In m even

D−1
c In m odd.

Reduction formulas. The reduction formulas for the generalized z2 + i problem are:

Dm
b In '

{
In m = 2k

D−1
c In m = 2k + 1.

To prove the reduction formulas, we again need only a few facts: D2
a  id, D2

c  id, and
Ddi  Ddi+1

for all other di. One difference from the case of I3 = I is that for n = 3 we have

D2
c  Da.

Case 1: m = 2k. D2k
b  · · · D2k

c  id.

Case 2: m = 2k + 1. D2k+1
b  · · · D2k+1

c
D−1

c D−1
c .



52 JAMES BELK, JUSTIN LANIER, DAN MARGALIT, AND REBECCA R. WINARSKI

(a)

→

(b) (c)

Figure 27. (a) The Julia set for I5. (b) The topological Hubbard tree for In
and its preimage. (c) The curves di in (R2, PIn), including a, b, and c

A sequence of polynomials. We now describe a sequence of polynomials Jn−1 that will appear as
the exterior maps for the obstructed maps D−1

c In that appear in our answer to the generalized
twisted z2 + i problem.

The polynomial Jn−1 is the real quadratic polynomial with kneading sequence 10 · · · 01̄ where
the symbol 0 is listed n− 3 times when n ≥ 3. Its critical point is pre-periodic with pre-period
n − 2 and period 1. The Hubbard tree for Jn−1 is a path consisting of n − 2 edges. If, as in
Figure 28, the edges of HJn−1 are labeled e1, . . . , en−1, then

(Jn−1)∗(ei) =

{
en−2en−3 · · · e2 i = 1

ei−1 2 ≤ i ≤ n− 2

The Julia set, Hubbard tree, and the full preimage of the Hubbard tree for J4 are depicted in
Figure 28. For n = 3, the kneading sequence for Jn−1 = J2 degenerates to 1̄, the kneading
sequence for the polynomial z2 − 2 that we saw in the solution to the twisted z2 + i problem.

Base cases. Unlike in the previous sections, the reduction formulas constitute a complete proof
of Theorem 5.5. To give a more satisfying resolution to the generalized twisted z2 + i problem,
we further describe the canonical form of the obstructed map D−1

c In, as per Section 4.4.
Figure 29 depicts the Hubbard bubble tree for D−1

c In. For each D−1
c In, the single curve

Da(b) is the canonical Levy cycle.
For eachD−1

c In, we may use the Alexander method to show that the exterior map is Thurston
equivalent to the polynomial Jn−1 described above.

The interior map for each D−1
c In is a mapping class on the closed disk bounded by the Levy

cycle Da(b) (this disk has two marked points on the boundary, in addition to the two in the
interior). Using the Alexander method we find that the interior map is the (unique) rotation
of order 2.

→

Figure 28. The Julia set for J4, as well as the Hubbard tree for J4 and its preimage
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Figure 29. The Hubbard bubble trees D−1
c In, for n = 4, 5, 6

More generalizations. Each curve di except for a = d0 lifts to c under iteration of the lifting
map for In. This means that (similar to Section 5.2), we obtain Dm

di
In ' Dm

c In for all i 6= 0

and m ∈ Z. Thus our solution to the twisted generalized z2 + i problem of the form Dm
b In also

immediately gives solutions to all twisted generalized z2 + i problems of the form Dm
ci In with

i ∈ {2, . . . , n− 1}.
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