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In 1976 (incidentally, the year the reviewer was born), Thurston first
circulated his now-famous preprint on the classification of surface homeo-
morphisms [81]. It states that every homeomorphism of a compact surface
is homotopic to a homeomorphism in standard form.

The generic standard form is a pseudo-Anosov homeomorphism. Such a
homeomorphism acts on the surface by preserving two transverse singular
measured foliations, multiplying the measure of one by a stretch factor λ > 1
and the other by 1/λ. In other words, away from a finite set of singular
points, a pseudo-Anosov homeomorphism is modeled on an Anosov map of
the torus, or equivalently, an element of SL(2,Z) with two real eigenvalues.

The precise statement of Thurston’s theorem is: every homeomorphism
of a compact surface is homotopic to a homeomorphism that either (a) has
finite order, (b) is reducible (that is, fixes an essential 1-submanifold), or (c)
is pseudo-Anosov. Moreover, the last case is exclusive from the first two. It
was realized after Thurston’s work (see [63]) that Nielsen had assembled all
of the tools needed for the classification [66, 67, 68, 69], and so this theorem
is sometimes called the Nielsen–Thurston classification theorem.

Let Mod(S) be the mapping class group of a surface S, that is, the group
of homotopy classes of homeomorphisms of S. Another way to state the
classification which suggests an analogy with the Jordan canonical form is:
for every element of Mod(S), there is a representative φ and a (possibly
empty) φ-invariant 1-submanifold C so the restriction of φ to S−C has two
kinds of components, finite order and pseudo-Anosov. Birman, Lubotzky,
and McCarthy showed that the reduction system C is canonical [13].

Shortly after Thurston’s announcement, there was a flurry of activity to
understand what he did. The book under review is the product of a year-long
seminar at Orsay devoted to Thurston’s work. The lectures were based on
notes from Thurston’s graduate course at Princeton University, handwritten
by Michael Handel and William Floyd.

In the broadest of strokes, Thurston’s proof proceeds as follows. Let Sg

be a closed, connected, orientable surface of genus g ≥ 2. Fricke showed
that the Teichmüller space Teich(Sg), the space of hyperbolic metrics on
Sg up to isotopy, is an open ball of dimension 6g − 6. The key idea of
Thurston is that Teich(Sg) has a compactification that is homeomorphic
to a closed ball; the boundary sphere is PMF(Sg), the space of projective
classes of measured foliations on Sg. Moreover, Mod(Sg) acts on this closed
ball. Then, in a most spectacular application of the Brouwer fixed point
theorem, Thurston concludes that each element of Mod(Sg) fixes some point
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of Teich(Sg) ∪ PMF(Sg); by analyzing the various cases for the fixed point,
we obtain the classification theorem.

The classification theorem is most remarkable for the myriad of proofs it
has spawned, each with its own underlying theory and applications. Very
quickly upon learning of Thurston’s theorem, Bers produced an analytic
proof, using Teichmüller’s theory of extremal quasiconformal maps [9]. A
few years later, Casson gave a proof using hyperbolic geometry, in particular
the theory of measured laminations [19]. Handel and Thurston [40] gave an
elementary argument for the classification using the action on the boundary
of the hyperbolic plane (à la Nielsen). Bonahon then developed the theory
from the point of view of geodesic currents; the space of geodesic currents
carries a Lorentz-type geometry, with Teich(Sg) lying on a metric sphere
and PMF(Sg) as the set of rays of the light cone [14]. Finally, in 1992,
Bestvina and Handel gave a combinatorial topological approach which used
train tracks and yields an algorithm to determine the Thurston type of a
homeomorphism [10]; this has been implemented by Brinkmann [16].

The Orsay seminar also consisted of lectures that presented the analytic
point of view of Bers. The lectures became the subject of a complementary
text by William Abikoff [2]. In the preface to the book under review, the
editors state that, in the end, the two points of view were found to be more
independent of each other than was initially believed.

1. Some aspects of Thurston’s Theory

Besides giving a detailed proof of the classification of surface homeomor-
phisms, the seminar at Orsay focused on three topics related to the theorem:
the construction of pseudo-Anosov maps, their dynamics, and the geomet-
ric properties of the associated mapping tori. We review these topics here,
making mention of a few more recent advances.

Constructions of pseudo-Anosov maps. Even given the classification
theorem, one thing is not at all obvious: do pseudo-Anosov homeomorphisms
exist? If so, how do we construct them? Nielsen knew a few examples of in-
finite order, irreducible mapping classes, but few enough that he conjectured
there were none acting trivially on the homology of the surface.

In his original work, Thurston gave a fairly general construction in terms
of Dehn twists. Let A and B be two simple closed curves or multicurves
(a multicurve is a collection of disjoint simple closed curves) in Sg, and let
TA and TB denote the mapping classes obtained by performing a positive
Dehn twist on each component of A and B. Assuming that A and B are in
minimal position and Sg− (A∪B) is a union of disks, Thurston proved that
most elements of the group generated by TA and TB are pseudo-Anosov; in
particular, TATBT

−1
A T−1

B is. Taking A to be a separating curve, we obtain
a wealth of counterexamples to Nielsen’s conjecture.

Penner gave another Dehn twist construction, again using a pair of multic-
urves [71]; see also [28, 7]. There is a large overlap between his construction
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and Thurston’s, although neither is subsumed by the other. Penner con-
jectured that every pseudo-Anosov map has a power that is given by his
construction, but there has been very little progress on this question.

Thurston showed that the stretch factor for a pseudo-Anosov homeomor-
phism of Sg is an algebraic integer whose degree is bounded above by 6g−6,
the dimension of Teich(Sg). Thurston states that this bound is sharp, but
as far as the reviewer knows this is still an open problem. In this direction,
Arnoux and Yoccoz [5] were able to use the theory of interval exchange trans-
formations (see [73, 83]) to construct a sequence of pseudo-Anosov maps
where the algebraic degrees of the stretch factors go to infinity; specifically,
they found examples on Sg with degree g.

It is also possible to construct pseudo-Anosov maps via branched covers.
Given any pseudo-Anosov homeomorphism φ of Sg, we can choose a finite
orbit of arbitrarily large cardinality (see below) and construct a cover Sh →
Sg branched over some subset of the orbit. Some power of φ then lifts
to a map of Sh that is also pseudo-Anosov. However, this construction is
limited, for instance because the stretch factor of the newly constructed
homeomorphism is the same as the original.

Casson gave a homological criterion for detecting pseudo-Anosov maps: a
mapping class is pseudo-Anosov if the characteristic polynomial p(t) for its
action on H1(Sg;Z) satisfies the following three properties: it is irreducible,

it does not have a root of unity as a root, and it is not a polynomial in tk

for k > 1 (see [27] for a slight strengthening). Notice that if h satisfies this
criterion and f acts trivially on H1(Sg), then fh is pseudo-Anosov.

In the case of a punctured surface Sg − p, there is another construction
due to Kra. The Birman exact sequence tells us there is an injective homo-
morphism π1(Sg, p) → Mod(Sg − p) given by pushing p along loops. Kra
proved if γ intersects every nontrivial element of π1(Sg) in an essential way,
then the image of γ in Mod(Sg − p) is pseudo-Anosov [50]. His proof uses
the complex-analytic point of view of Bers; see [27] for an elementary proof.

A long-standing open question is whether we can construct a pseudo-
Anosov homeomorphism whose stretch factor is any prescribed number λ,
where λ is an algebraic unit, all of whose conjugates besides 1/λ have ab-
solute value lying in (1/λ, λ) [32]. In his final paper, Thurston resolved the
analogous question for self-maps of graphs [77].

Recently, Mangahas [57] proved that, given any generating set for Mod(Sg),
there is an explicit pseudo-Anosov element with word length at most K,
where K depends only on g; see also [33]. The abundance of pseudo-Anosov
mapping classes is underscored by work of Maher [56] and Rivin [74] who
showed that, in some sense, the random mapping class is pseudo-Anosov (it
is an open question whether pseudo-Anosov elements are generic in the sense
that the fraction of pseudo-Anosov mapping classes in the ball of radius R
in the Cayley graph for Mod(Sg) goes to 1 as R → ∞).
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Subgroup classification. A finer analysis of the action of the mapping
class group on the Thurston compactification of Teichmüller space gives
a classification of subgroups of the mapping class group. Ivanov proved
a direct generalization of the classification of individual homeomorphisms:
every subgroup of Mod(Sg) is either (a) finite, (b) reducible (that is, there
is an essential 1-submanifold whose isotopy class is fixed by each element),
or (c) contains a pseudo-Anosov element [46].

McCarthy gave an analog of the Tits alternative for finitely generated
linear groups: every subgroup of Mod(Sg) either contains a free group of
rank 2 or contains a finitely generated abelian subgroup of finite index [60].
The key here is the fact that pseudo-Anosov mapping classes act with source-
sink dynamics on PMF(Sg).

Birman–Lubotzky–McCarthy [13] showed that every solvable subgroup
of the mapping class group is virtually abelian, and that a free abelian
subgroup of Mod(Sg) has rank at most 3g − 3. Moreover, they gave a
very clear picture of what free abelian subgroups look like: each is (up to
finite index) contained in the free abelian group generated by a collection of
pseudo-Anosov maps and Dehn twists supported on disjoint subsurfaces.

Handel and Mosher have very recently suggested a clean way to assemble
all of these theorems into one convenient package that they call the omnibus
subgroup theorem [65]. To state it requires some setup. First, for a given
mapping class f ∈ Mod(Sg), let N denote a regular neighborhood of its
canonical reduction system. The active subsurface Af is the union of the
components of Sg−N on which the first return map for (a representative of)
f is pseudo-Anosov, together with the components of N with the property
that the components of S−N on either side have periodic first return map.
The active subsurface is empty if and only if f is periodic, and is the whole
surface if and only if f is pseudo-Anosov.

The omnibus subgroup theorem is: every subgroup of Mod(Sg) has an ele-
ment f whose active subsurface Af is maximal, that is, the active subsurface
of every other element is (isotopic to) a subsurface of Af . One can derive
all of the above results about subgroups of Mod(Sg) from this theorem.

We will mention three open questions about subgroups of Mod(Sg). Farb
asked if every finitely generated normal subgroup is commensurable to ei-
ther Mod(Sg) or its Torelli subgroup [24]. Ivanov asked if for large d the
group generated by all dth powers of Dehn twists has any relations besides
the obvious ones [48]. Ivanov also asked if every finite index subgroup of
Mod(Sg) contains a congruence subgroup, that is, a subgroup arising from
a cover Sh → Sg (not long ago, Thurston resolved the g = 0 case [62]).

Recently, Dahmani, Guirardel, and Osin resolved a long-standing open
question about subgroups of Mod(Sg) by showing that there are normal
subgroups where every nontrivial element is pseudo-Anosov [21] (see also
[84]). Such subgroups even arise as the normal closure of a single element.
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Fibered 3-manifolds. Thurston first arrived at the theory of pseudo-
Anosov homeomorphisms while trying to determine which 3-manifolds admit
hyperbolic structures. In his own words [76]:

It seemed pretty obvious that a 3-manifold that fibers over the

circle couldn’t possibly have a hyperbolic structure. I kept try-

ing to think of proofs of that. I kept proving it but then when

I went to explain it to somebody the proof had a fallacy...

Once Thurston began to imagine what a fiber in a fibered hyperbolic 3-
manifold would have to look like geometrically—it would have to be very
bent up—he came upon the pseudo-Anosov theory and he proved that a
3-manifold fibering over the circle has a hyperbolic structure if and only if
the monodromy is homotopic to a pseudo-Anosov homeomorphism [78, 70].

When the first betti number of a fibered, hyperbolic 3-manifold M is
greater than 1, it in fact fibers in infinitely many ways. Thurston gave a
convenient way of organizing the elements of H1(M ;Z) corresponding to
fibers [80]. Specifically, he introduced a norm ‖ · ‖ on H1(M ;Z), now called
the Thurston norm, which essentially records the smallest genus represen-
tative of a given element of H1(M ;Z). He proved that the unit ball is a
finite-sided polyhedron and that the primitive elements of H1(M ;Z) lying
over a given open face are either all fibers or all not fibers.

By Thurston’s theorem, each fiber α over a given fibered face has a pseudo-
Anosov homeomorphism and hence a stretch factor λ(α) attached to it. We
can extend log λ(α) to a function on the rational points by homogeneity.
Fried proved the function log λ(α)‖α‖ is continuous and constant on rays and
hence descends to a continuous function on each fibered face of the unit ball
[31]; see also Long–Oertel [54]. Fried further proved this function is convex
on the interior of each fibered face; Matsumoto proved strict convexity [59].
What is more, as we approach the boundary of the cone, log λ(α)‖α‖ goes to
infinity. Fried also proved that all of the fibers over a given fibered face are
flow equivalent; in other words, there is a single flow in the circle direction
so that the first return map for each fiber is the monodromy.

McMullen [61] gave a finer invariant on each fibered face F called the
Teichmüller polynomial. This polynomial ΘF lies in Z[H1(M ;Z)/torsion].
If we write ΘF =

∑
ah · h, then the stretch factor λ associated to any

α ∈ H1(M ;Z) lying over F is the largest root of the polynomial p(t) =
∑

ah · t
α(h). McMullen used this to give a new proof of the strict convexity.

Notice that the strict convexity implies the existence of a unique minimum,
which has been studied by Sun [75].

Thurston noticed that the set of stretch factors for pseudo-Anosov ele-
ments of Mod(Sg) is closed and discrete in R; in particular it has a least
element λg (see also [5, 45]). Penner showed that log λg tends to 0 at the
rate 1/g. [72]. McMullen observed that if we take a sequence αi of fibers
over a given fibered face whose Thurston norms go to infinity and whose
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projections to the unit sphere converge to the interior of the face, then by
Fried’s work the associated stretch factors have Penner’s asymptotics [61].

The problem of understanding pseudo-Anosov maps with small stretch
factor has received much attention recently [1, 8, 17, 25, 36, 42, 43, 51,
52, 53, 64, 82], although λg is only known explicitly for g = 1, 2; see [20].
Farb, Leininger, and the reviewer proved that there is a finite set of cusped
hyperbolic 3-manifolds with the property that each of the infinitely many
smallest-stretch pseudo-Anosov maps is (after deleting singular points) the
monodromy of a fiber of one of these manifolds [26]; see also [4].

Today, we know that fibered hyperbolic 3-manifolds play a central role
in the world of 3-manifolds: Wise proved that every cusped hyperbolic 3-
manifold has a finite cover that is fibered [85], and Agol has proven this for
closed hyperbolic 3-manifolds [3]. These theorems, together with the proof
of Thurston’s geometrization conjecture by Perelman, put the final excla-
mation point on Thurston’s visionary program to understand 3-manifolds
by their geometric pieces [79].

Dynamics. A number of the basic dynamical facts about individual pseudo-
Anosov homeomorphisms were discovered right away:

(1) A pseudo-Anosov homeomorphism is topologically transitive (that
is, it has a dense orbit).

(2) The periodic points for a pseudo-Anosov homeomorphism are dense.
(3) The foliations for a pseudo-Anosov homeomorphism are uniquely

ergodic (i.e., each admits a unique transverse measure up to scale).
(4) A pseudo-Anosov homeomorphism has the minimal entropy among

all homeomorphisms in its homotopy class.
(5) A pseudo-Anosov homeomorphism has the minimum number of pe-

riodic points for each period in its homotopy class.
(6) Any two homotopic pseudo-Anosov homeomorphisms are conjugate

by a diffeomorphism.
(7) As a dynamical system, a pseudo-Anosov homeomorphism is isomor-

phic (in the measure-theoretic sense) to a Bernoulli shift.

Many of these facts are proven using the theory of Markov partitions, an-
other cousin of foliations, laminations, train tracks, and geodesic currents.
All of the proofs are contained in the book under review except (5), which
can be found in [6, 12, 27, 37].

One lower bound for the number of fixed points of a self-map of a space
is the Nielsen number. Ivanov proved that every mapping class has a repre-
sentative where the number of fixed points is equal to the Nielsen number
[44]. Fried showed there are pseudo-Anosov maps with no periodic points of
period less than any prescribed n [31]. Handel proved that a pseudo-Anosov
map has the minimal number of orbits in its homotopy class [37].

There are two ways to extend the pseudo-Anosov theory to noncompact
surfaces of infinite type. Franks and Handel proved that a diffeomorphism
of a surface has a normal form when restricted to the complement of the
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fixed points; if the set of fixed points is finite, this is just the Thurston
normal form [30]. Cantwell–Conlon, Fenley, and Handel–Miller classified
end-periodic homeomorphisms of noncompact surfaces [18, 29, 39].

A pseudo-Anosov homeomorphism is not differentiable at its singular
points. However, Gerber and Katok showed that it is topologically conjugate—
via a homeomorphism isotopic to the identity—to a diffeomorphism that is
Bernoulli with respect to a smooth measure [35].

The braid group Bn is the mapping class group of a disk with n marked
points. Boyland [15] introduced an ordering on the conjugacy classes in
∪nBn. Say that the conjugacy class C forces a conjugacy class C ′ if for
every representative of a mapping class f ∈ C, we can erase the marked
points for f and mark the points of some other finite orbit in order to
obtain a representative for C ′. This gives a partial ordering on conjugacy
classes analogous to the Sharkovskii order on N. In fact, Kolev has shown
that if a pseudo-Anosov homeomorphism of a disk has a period 3 orbit, then
it has an orbit of every period [49]; see also [34, 22, 38]. In other words,
there are elements of B3 that force elements of Bn for all n ≥ 3. The higher
genus version of this phenomenon is studied by Los [55].

Finally, we mention two facts about the dynamics of the action of the
mapping class group on the Thurston boundary of Teichmüller space. It
is elementary to see that the action is minimal: the orbit of each point is
dense. Masur proved that the action is also ergodic [58].

Other directions. There are many, many aspects of mapping class groups
and pseudo-Anosov maps that we have not broached here: Teichmüller and
Weil–Petersson geometries on Teichmüller space, interval exchange transfor-
mations, the complex of curves and the large-scale geometric properties of
the mapping class group, topological quantum field theories, cohomology of
the mapping class group and surface bundles, as well as the deep and grow-
ing analogy with the outer automorphism group of a free group, to name
just a few. Some places for the interested reader to start investigating are
the book by Birman [11], the book and survey by Ivanov [47, 46], the survey
by Harer [41], the textbook by the reviewer and Farb [27], the book of prob-
lems edited by Farb [23], and, last but not least, the research announcement
by Thurston [81], which has an extensive list of references.

2. Travaux de Thurston and Thurston’s work

Like most great books, Travaux de Thurston sur les Surfaces is known
by its nickname: FLP. The greatest testament to FLP’s importance is that
it currently has 370 references on MathSciNet and, 34 years after its initial
publication, the first derivative of this number is still increasing. There has
been an explosion in research on mapping class groups, and FLP is still
the best reference for the details about the Thurston compactification of
Teichmüller space and Thurston’s original proof of the classification.
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FLP has fifteen “exposés,” and is roughly divided into three parts. The
first five exposés serve as introduction and background. Exposés 6–9 and
11 contain the heart of the book: coordinates on the space of measured
foliations, proof that Teichmüller space is a ball, the Thurston compact-
ification of Teichmüller space, the proof of the classification theorem for
closed surfaces, and the classification theorem for surfaces with boundary.
The other five exposés treat a variety of topics related to the theory of
pseudo-Anosov homeomorphisms: their dynamics, their constructions, their
uniqueness properties, and their associated fibered 3-manifolds. The last
exposé is somewhat of an outlier; it presents Hatcher and Thurston’s proof
that the mapping class group is finitely presented.

The book really has five authors: Fathi, Laudenbach, Poénàru, Shub, and
Fried, and two of the lectures were given by Douady and Marin. Despite
this and despite the technical nature of the material, FLP is remarkably
cohesive, detailed, and clear.

The recently published translation, Thurston’s Work on Surfaces, is for
the most part a faithful rendition of the original text. However, the trans-
lators have taken the liberty of making some changes, for instance to clarify
a passage, insert a definition, correct a typo, modernize the language, or
elucidate the big picture. One cosmetic change is worth noting: “arc jaune”
was translated as “pants seam,” probably to the lament of a generation of
topologists. Overall, the translation is a most welcome addition for those
who use FLP as a reference and are more comfortable with English than
French. It is the reviewer’s hope that this new version will also introduce
Thurston’s brilliant insights and imagination to even wider audiences and
help inspire the present and future generations to pick up where he left off.

Acknowledgments. I would like to thank Mladen Bestvina, Benson Farb,
Michael Handel, Christopher Leininger, Michael Shub, Amie Wilkinson, and
Kevin Wortman for their help in preparing this review.
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pseudo-Anosov. C. R. Acad. Sci. Paris Sér. I Math., 292(1):75–78, 1981.

[6] D. Asimov and J. Franks. Unremovable closed orbits. In Geometric dynamics (Rio
de Janeiro, 1981), volume 1007 of Lecture Notes in Math., pages 22–29. Springer,
Berlin, 1983.

[7] Max Bauer. Examples of pseudo-Anosov homeomorphisms. Trans. Amer. Math. Soc.,
330(1):333–359, 1992.



REVIEW OF THURSTON’S WORK ON SURFACES 9

[8] Max Bauer. An upper bound for the least dilatation. Trans. Amer. Math. Soc.,
330(1):361–370, 1992.

[9] Lipman Bers. An extremal problem for quasiconformal mappings and a theorem by
Thurston. Acta Math., 141(1–2):73–98, 1978.

[10] M. Bestvina and M. Handel. Train-tracks for surface homeomorphisms. Topology,
34(1):109–140, 1995.

[11] Joan S. Birman. Braids, links, and mapping class groups. Princeton University Press,
Princeton, N.J., 1974. Annals of Mathematics Studies, No. 82.

[12] Joan S. Birman and Mark E. Kidwell. Fixed points of pseudo-Anosov diffeomorphisms
of surfaces. Adv. in Math., 46(2):217–220, 1982.

[13] Joan S. Birman, Alex Lubotzky, and John McCarthy. Abelian and solvable subgroups
of the mapping class groups. Duke Math. J., 50(4):1107–1120, 1983.

[14] Francis Bonahon. The geometry of Teichmüller space via geodesic currents. Invent.
Math., 92(1):139–162, 1988.

[15] Philip Boyland. Notes on dynamics of surface homeomorphisms. Warwick, preprint.
[16] Peter Brinkmann. An implementation of the Bestvina-Handel algorithm for surface

homeomorphisms. Experiment. Math., 9(2):235–240, 2000.
[17] Peter Brinkmann. A note on pseudo-Anosov maps with small growth rate. Experi-

ment. Math., 13(1):49–53, 2004.
[18] John Cantwell and Lawrence Conlon. Handel–miller theory and finite depth foliations.

arXiv:1006.4525.
[19] Andrew J. Casson and Steven A. Bleiler. Automorphisms of surfaces after Nielsen

and Thurston, volume 9 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1988.

[20] Jin-Hwan Cho and Ji-Young Ham. The minimal dilatation of a genus-two surface.
Experiment. Math., 17(3):257–267, 2008.

[21] Fran cois Dahmani, Vincent Guirardel, and Denis Osin. Hyperbolically embed-
ded subgroups and rotating families in groups acting on hyperbolic spaces.
arXiv:1111.7048v3.
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[28] Albert Fathi. Démonstration d’un théorème de Penner sur la composition des twists
de Dehn. Bull. Soc. Math. France, 120(4):467–484, 1992.

[29] Sérgio R. Fenley. End periodic surface homeomorphisms and 3-manifolds. Math. Z.,
224(1):1–24, 1997.

[30] John Franks and Michael Handel. Periodic points of Hamiltonian surface diffeomor-
phisms. Geom. Topol., 7:713–756 (electronic), 2003.

[31] David Fried. Flow equivalence, hyperbolic systems and a new zeta function for flows.
Comment. Math. Helv., 57(2):237–259, 1982.

[32] David Fried. Growth rate of surface homeomorphisms and flow equivalence. Ergodic
Theory Dynam. Systems, 5(4):539–563, 1985.



10 DAN MARGALIT

[33] Koji Fujiwara. Subgroups generated by two pseudo-anosov elements in a mapping
class group. ii. uniform bound on exponents. arXiv:0908.0995.

[34] Jean-Marc Gambaudo, Sebastian van Strien, and Charles Tresser. Vers un ordre de
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