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Abstract. The proof of the first statement of Theorem 5.1 of the paper
referenced in the title is correct for k = 1 and incorrect for k ≥ 2 and
should be considered an open problem. As such, the proof of the second
statement is not correct for k ≥ 2.

This note is an erratum for the published version of our paper [2]. The
arXiv has been updated with the corrections described here. As in our paper,
let ρ be the symplectic representation of Bn, let π1(D

′
n, p1), . . . , π1(D

′
n, pn)

denote the point pushing subgroups of Bn, and for 1 ≤ k ≤ n set

Kn,k = π1(D
′
n, p1) ∩ · · · ∩ π1(D′

n, pk)

Also, let Γn[m] denote Sp2g(Z)[m] when n = 2g+ 1 and
(
Sp2g+2(Z)[m]

)
~yg+1

when n = 2g + 2.
Theorem 5.1 describes ρ(Kn,k) for n ≥ 5. The theorem separately ad-

dresses the cases where n = 2g + 1 and n = 2g + 2. In each case, there
are two statements. The first statement is that ρ(Kn,k) contains Γn[4] and
the second statement describes the quotient of ρ(Kn,k) by Γn[4]. We re-
fer to these two statements as the containment statement and the quotient
statement, respectively.

The proof of the containment statement of Theorem 5.1 is correct for
k = 1 and incorrect for k ≥ 2. What our argument for the containment
statement actually shows is that each ρ(π1(D

′
n, pi)) contains Γn[4] and hence

the argument only proves the weaker statement that

Ln,k = ρ(π1(D
′
n, p1)) ∩ · · · ∩ ρ(π1(D

′
n, pk))

contains Γn[4]. Since Ln,1 = ρ(Kn,1), the argument for the containment
statement is correct for k = 1 and n ≥ 5. For k ≥ 2 we have Ln,k ⊇ ρ(Kn,k),
but this is not an equality in general.

It should be considered an open question as to whether the containment
statement of Theorem 5.1 is correct for k ≥ 2. At the end of the paper, we
explain how our proof of Theorem 5.1 can be extended to the case n = 3,
in particular that ρ(K3,k) contains Γ3[4] = SL2(Z)[4]. This statement, the
n = 3 version of the containment statement, is not correct. In particular,
the last statement in the paper, that ρ(K3,3) = Γ3[4], is not correct. In fact,
ρ(K3,3) has infinite index in SL2(Z). To see this, we first note that K3,3 is
the Brunnian subgroup of B3. Let Z denote the kernel of ρ : B3 → SL2(Z).
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The group Z is an infinite cyclic group generated by the square of the Dehn
twist about the boundary of D′

3. For m 6= 0, no element of the coset σm1 Z
is Brunnian, hence no power of the matrix ρ(σ1) lies in ρ(K3,3).

The statement and proof of the quotient statement of Theorem 5.1 are
correct for k = 1. Because of the n = 3 case, we expect that the containment
statement of Theorem 5.1 is not correct for any k ≥ 2 and n ≥ 5. If this is
the case, the quotient statement does not make sense for k ≥ 2.

As in the n = 3 case, we expect that ρ(Kn,k) in fact has infinite index
in Γn[4] for n ≥ 4 and k ≥ 2. As in the n = 3 case, the k = n version of
this statement can be proven by showing that if h ∈ ker(ρ) then σm1 h is not
Brunnian. Since ker(ρ) is generated by squares of Dehn twists about curves
surrounding an odd number of punctures [1], we may assume that h is such
a product.

What our argument for the quotient statement of Theorem 5.1 actually
shows is that the image of ρ(Kn,k) in Γn[2]/Γn[4] is (Z/2)2g, Z/2, or 1,
according to whether k is 1, 2, or greater. In other words, ρ(Kn,k) modulo
ρ(Kn,k)∩Γn[4] is the abelian group given in the previous sentence. It is also
true that Ln,k/Γn[4] is the same abelian group. The given indices of ρ(Kn,k)
in Γn[2] for k ≥ 2 are the correct indices for Ln,k in Γn[2].

There are two other incorrect statements in Section 3 of the published
paper that we would like to point out. First, we incorrectly state that ρ(Bn)
is the semi-direct product of a symmetric group with Γn[2]. In fact ρ(Bn)
is a non-split extension of these groups. Also, we incorrectly state that
ψ : Sp2g(Z/2) → sp2g(Z/2) is the abelianization map for Sp2g(Z/2) (Sato
proved that the abelianization is larger [3, Corollary 10.2]). We are grateful
to David Benson and Nick Salter for these corrections.
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