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Abstract. We study those Artin groups which, modulo their centers, are
finite index subgroups of the mapping class group of a sphere with at least 5
punctures. In particular, we show that any injective homomorphism between
these groups is given by a homeomorphism of a punctured sphere together with
a map to the integers. The technique, following Ivanov, is to prove that every
superinjective map of the curve complex of a sphere with at least 5 punctures
is induced by a homeomorphism. We also determine the automorphism group
of the pure braid group on at least 4 strands.

1. Introduction

We investigate injective homomorphisms between Artin groups which, modulo their
centers, embed as finite index subgroups in the mapping class group of an m-times
punctured sphere Sm, where m ≥ 5.

The extended mapping class group of a surface F is the group of isotopy classes of
homeomorphisms of F :

Mod(F ) = π0(Homeo(F )).

Theorem 1. Let m ≥ 5. If G is a finite index subgroup of Mod(Sm) and ρ : G→
Mod(Sm) is an injective homomorphism, then there is a unique f ∈ Mod(Sm) so
that ρ(g) = fgf−1 for all g ∈ G.

In particular, Theorem 1 applies to four infinite families of Artin groups modulo

their centers: A(An)/Z, A(Bn)/Z, A(C̃n−1), and A(Ãn−1) where n = m−2 (see be-
low for definitions). The group A(Bn) is a subgroup of A(An) and inherits the same

center Z; the groups A(C̃n−1) and A(Ãn−1) have trivial center. Thus, Theorem 1
is a generalization of work of Charney–Crisp, who computed the automorphism
groups of the aforementioned Artin groups using similar techniques [9].

Following Ivanov, we prove Theorem 1 by translating the problem into one about
the curve complex C(Sm). This is the abstract simplicial flag complex with vertices
corresponding to isotopy classes of essential curves in Sm and edges corresponding

2000 Mathematics Subject Classification. Primary: 20F36; Secondary: 57M07.
Key words and phrases. Artin groups, mapping class groups, curve complex, co-Hopfian.
This first author is partially supported by a VIGRE postdoctoral position under NSF grant

number 0091675 to the University of Utah. The second author is supported by an NSF postdoc-
toral fellowship.

1



2 ROBERT W. BELL AND DAN MARGALIT

to disjoint pairs of curves. To this end, we focus on particular elements of G: powers
of Dehn twists; each such element is associated to a unique isotopy class of curves
in Sm (see Section 2). We show that the injection ρ must take powers of Dehn
twists to powers of Dehn twists, thus giving an action ρ⋆ on the vertices of C(Sm).
Since ρ⋆ is easily seen to be superinjective in the sense of Irmak (i.e. ρ⋆ preserves
disjointness and nondisjointness), we will be able to derive Theorem 1 from the
following theorem, proven in the appendix.

Theorem 2. Let m ≥ 5. Every superinjective map of C(Sm) is induced by a unique
element of Mod(Sm).

The proofs of both theorems are modeled on work of Ivanov, who showed that
every isomorphism between finite index subgroups of Mod(F ) is the restriction of
an inner automorphism of Mod(F ), when the genus of F is at least 2 [21]. To
do this, he applied his theorem that every automorphism of C(F ) is induced by
an element of Mod(F ). His method has been used to prove similar theorems by
various other authors [26, 28, 18, 20, 19, 15, 31, 8]. In particular, Korkmaz proved
that every automorphism of C(Sm) is induced by an element of Mod(Sm) [26], and
Irmak showed that every superinjective map of C(F ), for higher genus F , is induced
by an element of Mod(F ), thus obtaining the analog of Theorem 1 for surfaces of
genus at least 2 [18, 20, 19].

After the completion of the work presented in this paper, the final cases of Irmak’s
theorem were completed by Behrstock–Margalit [3] and Shackleton [34]. See the
appendix for a detailed historical remark.

Artin groups. Before we explain the applications of Theorem 1 to Artin groups,
we recall the basic definitions. An Artin group is any group with a finite set of
generators {s1, . . . , sn} and, for each i 6= j, a defining relation of the form

sisj · · · = sjsi · · ·

where sisj · · · denotes an alternating string of mij = mji letters. The value of mij

must lie in the set {2, 3, . . . ,∞} with mij = ∞ signifying that there is no defining
relation between si and sj .

It is convenient to define an Artin group by a Coxeter graph, which has a vertex for
each generator si and an edge labelled mij connecting the vertices corresponding
to si and sj if mij > 2. The label 3 is suppressed. The Coxeter graphs An, Bn,

C̃n−1, and Ãn−1 for the Artin groups A(An), A(Bn), A(C̃n−1), and A(Ãn−1) are
displayed in Figure 1.

Artin groups and mapping class groups. The Artin group A(An) is better
known as the braid group on n+1 strands. If Dn+1 is the disk with n+1 punctures,
and Homeo(Dn+1, ∂Dn+1) is the space of homeomorphisms of Dn+1 which are the
identity on the boundary, then A(An) is isomorphic to

Mod(Dn+1, ∂Dn+1) = π0(Homeo(Dn+1, ∂Dn+1))

(see, e.g., [6]). Note that homeomorphisms which are the identity on the boundary
are necessarily orientation preserving. The pure braid group P (An) is the (finite
index) subgroup of A(An) consisting of elements which fix each puncture of Dn+1.



INJECTIONS OF ARTIN GROUPS 3

An

Bn

C̃n−1
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Figure 1. Coxeter graphs with n vertices.

The group A(Bn) is isomorphic to a subgroup of A(An) fixing one given puncture
(see [1] or [9]).

The center Z of A(An) is generated by the Dehn twist about a curve isotopic to
∂Dn+1; we denote this element by z. Both A(Bn) and P (An) inherit the same
center.

We can also identify A(An)/Z, A(Bn)/Z, and A(C̃n−1) with the subgroups of
Mod(Sn+2) consisting of orientation preserving elements which fix one, two, and
three particular punctures, respectively; further P (An)/Z is isomorphic to the pure
mapping class group PMod(Sn+2), which is the finite index subgroup of Mod(Sn+2)
consisting of orientation preserving elements which fix every puncture. The group

A(Ãn−1) is also isomorphic to a finite index subgroup of Mod(Sn+2). A complete
description of these isomorphisms appears in the paper of Charney–Crisp [9]. The
proofs are due to Allcock, Kent–Peifer, Charney–Peifer, Crisp, and Charney–Crisp
[1, 9, 10, 11, 25].

Applications. We now give some consequences of Theorem 1. A group is co-
Hopfian if each of its injective endomorphisms is an isomorphism.

Corollary 3. For n ≥ 3, all finite index subgroups of Mod(Sn+2) are co-Hopfian;

in particular, the groups A(An)/Z, A(Bn)/Z, A(C̃n−1), A(Ãn−1), and P (An)/Z
are co-Hopfian.

For each 0 ≤ k ≤ m = n + 2, let Gk be a subgroup of Mod(Sm) consisting
of orientation preserving elements which fix k given punctures. Note that G0 is
the index 2 subgroup of Mod(Sm) consisting of orientation preserving elements,
G1

∼= A(An)/Z, and Gm−1 = Gm = PMod(Sm). Also, G2
∼= A(Bn)/Z and

G3
∼= A(C̃n−1).

Corollary 4. Suppose n ≥ 3 and let G and H be any of the groups in Figure 2.
Then there exists an injection ρ : G → H if and only if there is directed path from
G to H in Figure 2.

Theorem 1 tells us that ρ preserves the index of G. We have [Mod(Sm) : Gk] =

2m!/(m−k)!, and the index ofA(Ãn−1) is the same asA(C̃n−1) ∼= G3 (see [9]). Since

A(Ãn−1) fl A(C̃n−1) (see [9]), there are no arrows from right to left. To complete
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A(Ãn−1)

PMod(Sn+2) Gn
. . . G4 A(C̃n−1) A(Bn)/Z A(An)/Z G0

Figure 2. The diagram for Corollary 4.

the proof of the corollary, it suffices to note that P (An)/Z is not a subgroup of

A(Ãn−1) (see [9]) and that P (An)/Z, contained in each Gk, is normal in Mod(Sm).

One might also ask whether or not any injection from Corollary 4 is unique up to
automorphisms of H . The answer is no. For instance, since Gm is normal in G0, we
may conjugate Gm by any element of Mod(Sm) to get an injective homomorphism
Gm → Gk for any k. However, if k > 0, then f might not fix the k punctures fixed
by Gk, and so there is no automorphism of Gk which achieves the injection.

We also characterize injections between the groups A(An), A(Bn), and P (An) (with
their centers). There are inclusions: P (An) → A(Bn) → A(An) (see Section 5); all
other injections between these groups are described by the following corollary to
Theorem 1. We denote the center of a group G by Z(G).

Theorem 5. Suppose n ≥ 3. Let G be a finite index subgroup of A(An). If
ρ : G → A(An) is an injective homomorphism, then there is an induced injection
G/Z(G) → A(An)/Z. Moreover, there is a unique f ∈ Mod(Sn+2) so that, after
identifying A(An)/Z with the group G1, we have

ρ(g)Z = f(gZ)f−1

for all g ∈ G.

In Section 5, we explain how this theorem may be applied to give an explicit list
of all injections of A(An), A(Bn), and P (An) into A(An). The case of A(An) was
already handled in a previous paper of the authors [5].

Combining Theorem 5 with Corollary 4, we immediately obtain an analogue of
Corollary 4 for A(An). Precisely, if Lk is a subgroup of A(An) corresponding to
elements which fix k particular punctures, then there is an injective homomorphism
Lj → Lk if and only if j > k. In particular, there is an injective homomorphism
between two of the groups A(An), A(Bn), and P (An) if and only if there is an
obvious one.

We further prove the following theorem. For the statement, note that each Lk

inherits the same center Z as the the entire group A(An).

Theorem 6. The natural map Aut(Lk) → Aut(Lk/Z) is surjective.

We give a more complete description of Aut(Lk) in two cases. The first is a theorem
of Charney–Crisp [9].

Theorem 7. For n ≥ 3, we have

Aut(A(Bn)) ∼= (Z2 × Z2) n (G2 × Z)

where G2 is the group defined above.
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Whereas the Charney–Crisp proof of Theorem 7 relies on a semidirect product
decomposition of A(Bn) due to Kent–Peifer, we work directly from the isomorphism
A(Bn) ∼= L1.

Finally, we compute the automorphism group of the pure braid group. The proof
uses our understanding of injections P (An) → A(An), a theorem of Korkmaz, and
a direct product decomposition of P (An) pointed out to us by Luis Paris.

Theorem 8. Suppose n ≥ 3 and let N =
(
n+1

2

)
. We have

Aut(P (An)) ∼= Mod(Sn+2) n (Z2 n ZN−1).

We remark that P (A2) is isomorphic to the free group on two letters and P (A1) ∼= Z.
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on this project. Joan Birman, Chris Leininger, and Luis Paris were very generous
with their time and energy; for this we are thankful. We are also grateful to Mladen
Bestvina, Tara Brendle, Ruth Charney, Feng Luo, Andy Putman, Michah Sageev,
Saul Schleimer, Steven Spallone, and Kevin Wortman for helpful conversations.
Finally, we thank the referees for comments which improved the paper.

2. Background

Curves. By a curve in a surface F , we mean the isotopy class of a simple closed
curve in F which is not isotopic to a point, a puncture, or a boundary component
of F . We will often not make the distinction between a representative curve and
its isotopy class.

We denote by i(a, b) the geometric intersection number between two curves a and
b.

A maximal collection of pairwise disjoint curves in Sm is called a pants decomposi-
tion. Any pants decomposition of Sm or Dm−1 has m− 3 curves.

The interior of a curve in Dn+1 is the component of its complement which does
not contain ∂Dn+1. A curve in Dn+1 with k punctures in its interior is called a
k-curve.

Curve complex. The curve complex C(F ) for a surface F , defined by Harvey,
is the abstract simplicial flag complex with a vertex for each curve in F and edges
corresponding to geometric intersection zero [17].

A map φ : C(F ) → C(F ) is called superinjective if for any two vertices v and w of
C(F ), thought of as curves in F , we have i(v, w) = 0 if and only if i(φ(v), φ(w)) = 0.
Superinjective maps of C(Sm) are injective for m ≥ 5 since, given two distinct
curves, there is a curve which is disjoint from one but not the other.

Twists. A Dehn twist about a curve a, denoted Ta, is the element of the mapping
class group which has support on an annular neighborhood of a, and is described
on that annulus by Figure 3.
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a

Figure 3. Dehn twist about a curve a.

If a is a 2-curve, we define the half twist about a, denoted Ha, to be the element
of the mapping class group which has support the interior of a, and is described
inside this twice-punctured disk by Figure 4.

a a

Figure 4. Half twist about a curve a.

For each f ∈ Mod(Sm), let ǫ(f) = 1 if f preserves orientation and ǫ(f) = −1 if
not. We will use the following connection between the topology and algebra of
Dehn twists in Mod(Sm). In the statement (and throughout the paper), we use
functional notation; that is, elements are applied right to left.

Fact 9. Suppose f ∈ Mod(Sm). Then fTaf
−1 = T

ǫ(f)
f(a). In particular, [f, Ta] = 1

implies f(a) = a, and powers of Dehn twists commute if and only if the curves have
geometric intersection zero.

For a group Γ, we define its rank, rk Γ, to be the maximal rank of a free abelian
subgroup of Γ. It follows from work of Birman–Lubotzky–McCarthy that for any
surface F , rk Mod(F ) is realized by any subgroup generated by powers of Dehn
twists about curves forming a pants decomposition for F [7]; thus, rk Mod(Sm) =
m − 3. The following theorem of Ivanov gives another connection between the
algebra and topology of Mod(Sm) [21]. We restrict our attention here to the genus
0 case, which has a particularly simple statement. Throughout, CH(g) denotes the
centralizer of g in the group H .

Theorem 10. Let m ≥ 5 and let P be a finite index subgroup of PMod(Sm).
An element g of P is a power of Dehn twist if and only if Z(CP (g)) ∼= Z and
rk CP (g) = m− 3.

We now state a group theoretical lemma, due to Ivanov–McCarthy [24], which will
be used in Proposition 12.
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Lemma 11. Let ρ : Γ → Γ′ be any injective homomorphism of groups, where
rk Γ′ = rk Γ <∞. If G < Γ is a free abelian subgroup of maximal rank, and g ∈ G,
then

rk Z(CΓ′(ρ(g))) ≤ rk Z(CΓ(g)).

Note that Lemma 11 applies whenever g is a power of a Dehn twist and both Γ and
Γ′ are finite index subgroups of PMod(Sm).

3. Subgroups of Mod(Sm)

Let ρ : G → Mod(Sm) be an injective homomorphism, where G is a finite index
subgroup of Mod(Sm) with m ≥ 5. Set Q = PMod(Sm) and P = Q ∩ ρ−1(Q).
Note that since P is a finite index subgroup of Mod(Sm), every Dehn twist has a
nontrivial power in P .

Proposition 12. Let a be a curve in Sm, and choose any nonzero k so that T k
a ∈ P .

There is a unique curve a′ (independent of k) and an integer k′ so that ρ(T k
a ) = T k′

a′ .

Proof. By Theorem 10, Z(CP (g)) ∼= Z. Lemma 11 and the fact that ρ is injective
imply that Z(CQ(ρ(g)) ∼= Z. Since rk ρ(CP (g)) = rk Mod(Sm), Theorem 10 says
that ρ(g) must be a power of a Dehn twist about some curve a′. The uniqueness
of a′ follows from the fact that 〈Ta〉 ∩ P is cyclic. ˜

By Proposition 12, ρ induces a well-defined action ρ⋆ on curves given by

ρ(T k
a ) = T k′

ρ⋆(a).

Applying Fact 9, we have:

Proposition 13. The map ρ⋆ is a superinjective map of C(Sm).

We are now ready to complete the proof of Theorem 1, assuming Theorem 2.

Proof. By Propositions 12 and 13, the injection ρ gives rise to a superinjective
map ρ⋆ of C(S), which by Theorem 2 is induced by a unique f ∈ Mod(Sm); that
is to say, ρ⋆(c) = f(c) for every curve c. Since f is unique, we can check that
ρ(g) = fgf−1 by checking that fg(c) = ρ(g)f(c) for any curve c. We choose k so
that T k

g(c), T
k
c ∈ P , and let k′ and k′′ be the integers given by the application of

Proposition 12 to T k
g(c) and T k

c .

T k′

fg(c) = ρ(T k
g(c)) = ρ(gT±k

c g−1) =

ρ(g)ρ(T±k
c )ρ(g)−1 = ρ(g)T k′′

f(c)ρ(g)
−1 = T±k′′

ρ(g)f(c)

Thus, T k′

fg(c) = T±k′′

ρ(g)f(c), which implies that fg(c) = ρ(g)f(c). ˜
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4. Subgroups of A(An)

Let G < A(An) be a finite index subgroup and ρ : G → A(An) an injective
homomorphism. To prove Theorem 5, we need to show that ρ induces an injective
homomorphism G/Z(G) → A(An)/Z and apply Theorem 1.

As with Theorem 1, we shall require the existence of a superinjective map ρ⋆ of
C(Dn+1) which is induced by ρ in the sense that for any curve a we have

ρ(T k
a ) = T k′

ρ⋆(a)z
k′′

for some integers k, k′, and k′′ (k and k′ nonzero); as usual z is the generator of
the center of A(An). The argument is exactly the same as in Proposition 12, with
Theorem 10 replaced by the following corollary of Theorem 10.

Corollary 14. Let P be a finite index subgroup of P (An). An element g of P is
the product of a central element and a nontrivial power of a noncentral Dehn twist
if and only if Z(CP (g)) ∼= Z2 and rk CP (g) = n.

We now prove the theorem.

Proof of Theorem 5. Let G be a finite index subgroup of A(An) and ρ : G→ A(An)
an injective homomorphism. We know that G has nontrivial center Z(G) since it
is finite index in A(An). Further we have Z(G) = Z ∩ G ∼= Z. Indeed, if ζ is an
element of Z(G), then ζ must fix every curve in Dn+1 by Fact 9 and the fact that
G is finite index; hence ζ is a power of z.

Let ζ denote a generator of Z(G). We now show that ρ(Z(G)) < Z by showing
ρ(ζ) ∈ Z. Since rk G = rk A(An), we have that ρ(ζk) ∈ Z for some nonzero k.

Choose a pants decomposition P of Dn+1. As in Section 3, we know that ρ⋆(P)
is also a pants decomposition. Further, because ζ is central and ρ is injective,
it follows that ρ(ζ) fixes each element of ρ⋆(P). Since an orientation preserving
element of Mod(S3) is determined by its action on the punctures, it follows that
ρ(ζ) lies in the free abelian subgroup generated by half twists and Dehn twists in
the curves of ρ⋆(P). Since ρ(ζ)k ∈ Z, it now follows that ρ(ζ) ∈ Z.

Moreover, we have that ρ−1(Z) < Z(G), by the injectivity of ρ. Thus, ρ induces
a well-defined injection G/Z(G) → A(An)/Z. Since G/Z(G) is finite index in
A(An)/Z, we may apply Theorem 1. Thus, fixing an identification A(An)/Z <
Mod(Sn+2), there is a unique f ∈ Mod(Sn+2) so that

ρ(g)Z = f(gZ)f−1

for all g ∈ G. This proves the theorem. ˜

We now take a moment to interpret Theorem 5 in a way that will be useful to
us in the next section. The element f ∈ Mod(Sn+2) from the theorem does not
necessarily correspond to an element of Mod(Dn+1), for it may switch the puncture
of Sn+2 corresponding to the boundary of Dn+1 with another puncture. However,
even in this case, since C(Dn+1) ∼= C(Sn+2), the element f induces an automorphism
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f⋆ of C(Dn+1). Since f is an element of Mod(Sn+2) as opposed to Mod(Dn+1), the
map f⋆ may take a k-curve to an (n− k + 2)-curve.

Now, let g be a power of a noncentral Dehn twist or half twist in G; for concreteness,
g = T k

a . The coset gZ is a power of a Dehn twist, also denoted T k
a , thought

of as an element of Mod(Sn+2). The conjugate f(gZ)f−1 is equal to T
ǫ(f)k
f⋆(a) . It

follows from Theorem 5 that ρ(g) is a product of T
ǫ(f)k
f⋆(a) with a central element.

We again emphasize that f is an element of the mapping class group of Sn+2, and
not Dn+1, and so f⋆ can take a curve to one which is not topologically equivalent
in Dn+1. In fact, we will see examples of this “nongeometric” phenomenon in the
next section, where we classify injective homomorphisms of A(An), A(Bn), and
P (An) into A(An). As each of these groups is generated by half twists and Dehn
twists, we will be able to understand these injections via the following corollary to
Theorem 5, which summarizes the above discussion.

Corollary 15. Let G be a finite index subgroup of A(An) and ρ : G → A(An) an
injective homomorphism. There is an f ∈ Mod(Sn+2) so that for any power of a
Dehn twist T k

a ∈ G, we have

ρ(T k
a ) = T

ǫ(f)k
f⋆(a) z

t

for some integer t = t(T k
a ).

The analogous statement for half twists also holds. We remark that the reason
we focus on Dehn twists and half twists here is that in A(An) there is a natural
representative of a Dehn twist coset of A(An)/Z, and so, combined with the action
of f⋆ on curves, there is a relatively simple form for the image under ρ of a power
of a twist.

Moving punctures criterion. Another fact which will be useful in the next
section is that f must send moving punctures to moving punctures; that is, the set
of punctures of Sn+2 which are not fixed by every element of G/Z(G) must be sent
by f to into the n+ 1 punctures which are not fixed by A(An)/Z (recall that only
one puncture is fixed by A(An)/Z). This is because conjugation by f sends fixed
punctures to fixed punctures and moving punctures to moving punctures. Below,
we call this the moving punctures criterion. We remark that this criterion can be
used to derive Corollary 4 from Theorem 1.

5. Catalogue of injections

We now use Theorem 5 to list all injections of the groups P (An), A(Bn), and A(An)
into A(An). As usual, we denote the generator of Z by z.

Instead of applying Theorem 5 directly, we will instead use Corollary 15 and the
moving punctures criterion. We use the notation of Corollary 15: given an element
f of Mod(Sn+2), the symbol f⋆ denotes the induced automorphism of C(Sn+2);
the identification C(Dn+1) ∼= C(Sn+2) comes from the identification A(An)/Z <
Mod(Sn+2).
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5.1. Injections of A(An). The Artin group A(An) is defined via the presentation
given by Figure 1. We denote the generators by σ1, . . . , σn. Under the identification
with Mod(Dn+1, ∂Dn+1), each generator σi corresponds to a half twist Hai

about
a curve ai in Dn+1 (see [6]).

Let ρ : A(An) → A(An) be an injective homomorphism. Applying the moving
punctures criterion, we see that the element f ∈ Mod(Sn+2) given by Theorem 5
must send the puncture of Sn+2 fixed by A(An)/Z to itself. Therefore, we may think
of f as an element of Mod(Dn+1). Corollary 15 then implies that ρ is described on
generators by the formula

ρ(Hai
) = H

ǫ(f)
f⋆(ai)

zti

where each ti is an integer. Since the σi are all conjugate in A(An), we have that
ti is the same for all i. Conversely, any choices of f ∈ Mod(Dn+1) and t = t1
determine an injective homomorphism. Indeed, Theorem 5 tells us that

ρ(g)Z = f(gZ)f−1

and so the kernel of ρ is contained in Z. However, since z = (σ1 · · ·σn)n+1, we have

ρ(z) = z · zt(n(n+1)) = z1+t(n(n+1))

As n ≥ 3, we see t(n(n+1)) cannot be −1, so ρ(z) is not trivial, and the kernel of ρ
is trivial. Thus, we have an injection for any t; moreover, the map is not surjective
when t 6= 0: the preimage of Z is contained in Z, but z 7→ z1+t(n(n+1)), so nothing
maps to z.

It follows that Aut(A(An)) ∼= Mod(Dn+1). This was first proven by Dyer–Grossman
[14]. Ivanov was the first to compute Aut(A(An)) from the perspective of mapping
class groups [22].

5.2. Injections of A(Bn). Again, this group has a presentation given by Figure 1.
We denote the generators for A(Bn), from left to right, by s1, . . . , sn. The usual
inclusion A(Bn) → A(An) is given by s1 7→ σ2

1 and si 7→ σi for i > 1.

Let ρ : A(Bn) → A(An) be an injective homomorphism. There are two punctures
fixed by A(Bn)/Z < Mod(Sn+2). By the moving punctures criterion, the element
f given by Theorem 5 must send one of these two punctures to the puncture fixed
by A(An)/Z. Identifying σi with Hai

as above, this means that f⋆ takes ai to
a 2-curve when i > 1, and f⋆(a1) is either a 2-curve or an n-curve. We will see
in Section 6 that Aut(A(Bn)) → Aut(A(Bn)/Z) is surjective, so we are forced to
consider these nongeometric maps f⋆.

As above, the homomorphism ρ is given on generators by

ρ(Ta1
) = T

ǫ(f)
f⋆(a1)

zt1 and ρ(Hai
) = H

ǫ(f)
f⋆(ai)

zti for i > 1.

Since the si are conjugate for i > 1, we have that ti is the same for these i; set
u = t1 and v = t2. Conversely, we have a well-defined homomorphism for any
u and v. If g 7→ 1, we again have that g ∈ Z. Since z = (s1 · · · sn)n, we have
z 7→ z1+nu+n(n−1)v. But there are no u and v which make the latter trivial (as
n and n(n − 1) are not relatively prime), so every choice of u and v leads to an
injection.
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5.3. Injections of P (An). We identify P (An) with the elements of A(An) which
fix each puncture of Dn+1. There is a standard generating set for P (An), due to
Artin, consisting of one Dehn twist Tai,j

for each pair of punctures of Dn+1 (see
[29, pp. 173–174]). If the punctures of Dn+1 lie in a horizontal line, then each
ai,j can be realized as the boundary of a regular neighborhood of an arc which lies
below this horizontal and connects the ith and jth punctures; note that ai = ai,i+1.

Let ρ : P (An) → A(An) be an injective homomorphism. As in the previous cases,
we apply Corollary 15 and deduce that ρ is described on generators by

ρ(Tai,j
) = T

ǫ(f)
f⋆(ai,j)z

ti,j

for some f ∈ Mod(Sn+2). In the case of P (An)/Z, there are no moving punctures in
Sn+2, and so the moving punctures criterion gives no restriction for the action of f
on the punctures of Sn+2. We will see in Section 6 that in fact every f ∈ Mod(Sn+2)
gives rise to an automorphism of P (An), and so the f associated to ρ is arbitrary.

Conversely, since all of Artin’s defining relations of P (An) are commutation rela-
tions (see [2]), it follows that even if the ti,j are all different, ρ is a well-defined
homomorphism. Again, the kernel of ρ must be contained in Z. In the generators
of P (An), z can be written as

(Tan,n+1
)(Tan−1,n+1

Tan−1,n
) · · · (Ta1,n+1

· · ·Ta1,3
Ta1,2

)

(recall we use functional notation) and so we see that

z 7→ z1+
P

ti,j .

Hence, there is an affine hyperplane in ZN , where N =
(
n+1

2

)
, corresponding to

noninjective homomorphisms of P (An) into A(An).

Remark. The abstract commensurator Comm(G) of a group G is the collec-
tion of isomorphisms of finite index subgroups of G, where two such isomorphisms
are equivalent if they agree on some common finite index subgroup. For a given
group A(An), A(Bn), or P (An), different choices of the function t give rise to dis-
tinct elements of Comm(A(An)). After the first version of this paper was written,
Leininger–Margalit proved that Comm(A(An)) ∼= Mod(Sn+2) n (Q× n Q∞) [27].

6. Automorphisms

In this section we prove Theorem 6 by constructing a lift ξk of the natural map
Aut(Lk) → Aut(Lk/Z). As in the introduction, Lk is the subgroup of A(An)
consisting of elements which fix k particular punctures. In the cases of L1

∼=
A(Bn) and Ln+1

∼= P (An), we will compute the automorphism groups explicitly
(Theorems 7 and 8).

Before we begin in earnest, we note that any Lk can be generated by Artin’s
generators for P (An) plus a collection of half twists which are lifts of the elements
of the symmetric group on n+ 1 letters which are in the image of Lk.

Charney–Crisp define a transvection of a group G with infinite cyclic center Z = 〈z〉
to be a homomorphism G → G of the form x 7→ xzt(x), where t : G → Z is a
homomorphism. They observe that such a map is an automorphism if and only if
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its restriction to Z is surjective; this holds if and only if t(z) = ±1, i.e., z 7→ z±1.
We denote by Tv(G) the transvection subgroup of Aut(G).

We consider the following sequence:

(1) 1 → Tv(Lk) → Aut(Lk) → Aut(Lk/Z) → 1

Our main goal is to construct the lift ξk : Aut(Lk/Z) → Aut(Lk) (so the sequence
is exact). The group Tv(Lk) can often be computed directly from a presentation
of Lk, and (by Theorem 1, say) Aut(Lk/Z) is isomorphic to the subgroup Ḡk+1

of Mod(Sn+2) consisting of elements which preserve a set of k + 1 punctures (the
group Ḡk+1 is generated by Dehn twists, half twists, and a reflection). In the cases
of L1

∼= A(Bn) and Ln+1
∼= P (An), we will show that the above exact sequence is

split.

6.1. Auxiliary groups. Intuitively, we would like to “blow up” the punctures fixed
by Lk into boundary components so that the group Ḡk+1

∼= Aut(Lk/Z) cannot
distinguish between the original boundary of Dn+1 and the fixed punctures. In
particular, we want Ḡk+1 to be able to interchange ∂Dn+1 with the fixed punctures.

We remark ahead of time that the cases of L1 and Ln+1 are not quite as complicated
as the general case of Theorem 6, even though the results are stronger for these
groups (Theorems 7 and 8). Some of the details can be skipped in these cases.

Let S̄ be a sphere with n+ 2 boundary components. We choose a set P of distin-
guished points in S̄, one in each boundary component. Then, we define Mod(S̄) to
be the group of homeomorphisms of S̄ fixing P as a set, modulo isotopies which fix
P .

We fix an embedding S̄ → Dn+1 which induces an isomorphism on the level of
curve complexes (send each boundary component to a circle around a puncture or
a circle parallel to ∂Dn+1). We will use the same names for the curves which are
equivalent under this isomorphism (and the other isomorphisms below).

Figure 5. Generalized half twist.

We get the embedding ι : A(An) → Mod(S̄) as follows. If the generators σi

correspond to half twists Hai
about the 2-curves ai, then we define ι(Hai

) to be the
generalized half twist about ai, as indicated in Figure 5. The generalized half twist
about a curve a is denoted H̃a. The homomorphism ι has appeared previously; see
for instance [12].

For our definition of ι to be precise, we must specify the points of P . If {di} are
the boundary components of S̄, we choose the unique such labelling consistent with
the isomorphism C(Dn+1) ∼= C(S̄) and the choice of the {ai}. We draw S̄ in the
plane so that dn+2 is the outer boundary component and the other di are Euclidean
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circles whose centers lie on a horizontal line. Then, the points of P are chosen to
be the leftmost point of each circle (this choice is consistent with Figure 5).

To see that ι is a homomorphism, one only needs to check the two braid rela-
tions. The commuting relation obviously holds. In Figure 6, we show the effect of
ι(Hai

Hai+1
Hai

) = ι(Hai+1
Hai

Hai+1
). We can also see that ι is injective; indeed,

the map S̄ → Dn+1 induces a left inverse π : Mod(S̄) → A(An). Of course, ι

restricts to an injection Lk → Mod(S̄), also called ι, for any k.

Figure 6. The braid relation in Mod(S̄).

We introduce another surface S̄k, obtained by gluing punctured disks to the di

corresponding to the punctures in Dn+1 not fixed by Lk (the surface S̄k is a sphere
with k+ 1 boundary components and n− k+ 1 punctures). The inclusion S̄ → S̄k

identifies C(S̄) with C(S̄k) and induces a map η : ι(Lk) → PMod(S̄k), where by

PMod(S̄k) we mean the isotopy classes of homeomorphisms of S̄k which are the
identity on the boundary. Fixing a set of points P ⊂ ∂S̄k (one for each of the

k+ 1 boundary components), we can alternatively think of PMod(S̄k) as a normal
subgroup of the group Mod(S̄k), which consists of homeomorphisms of S̄k fixing P
as a set (modulo isotopies fixing P ).

The map ιk = η ◦ ι|Lk
is again injective since there is an inverse πk induced by

gluing punctured disks to k of the components of ∂S̄k.

We also want a map from Mod(S̄k) to Ḡk+1. We glue punctured disks to the k+ 1
boundary components of S̄k in order to obtain the surface Sn+2. The inclusion of
surfaces induces a surjective map Mod(S̄k) → Ḡk+1.

We encode the key relationships between all of our groups in Figure 7.

A(An)
ι

Mod(S̄) Mod(Sn+2)

Lk

ιk

Mod(S̄k) Ḡk+1

PMod(S̄k)

Figure 7. Groups used in the definition of ξk : Aut(Lk/Z) → Aut(Lk).
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6.2. Generalized lantern relation. In order to define our lift ξk : Aut(Lk/Z) →
Aut(Lk), we will need a relation in PMod(S̄) called the generalized lantern rela-
tion. Let {Tai,j

} be the set of Artin generators for P (An), and let {di} be the set

of boundary components of S̄ (indexed appropriately). In the language we have
developed, the relation is

ι(z) = ι((Tan,n+1
)(Tan−1,n+1

Tan−1,n
) · · · (Ta1,n+1

· · ·Ta1,3
Ta1,2

))

= T−1
d1
T−1

d2
· · ·T−1

dn+1
Tdn+2

(the first equality is the well-known relation in P (An), and the second equality is
the generalized lantern relation). This relation appears in the work of Wajnryb
[35], who writes that the relation can be checked “by induction (by drawing many
pictures)”. In Section 7, we give a straightforward proof of the relation.

Without reference to ι, the generalized lantern relation is simply:

(Tan,n+1
)(Tan−1,n+1

Tan−1,n
) · · · (Ta1,n+1

· · ·Ta1,3
Ta1,2

) = T n−1
d1

T n−1
d2

· · ·T n−1
dn+1

Tdn+2

In the case of n = 2, this relation is precisely the famous lantern relation, known
to Dehn [13].

Stated in this alternate way, the relation exhibits an obvious asymmetry in P (An)
between the punctures of Dn+1 and ∂Dn+1. In our first description of the rela-
tion (which is the formulation used below), there still is an asymmetry (in the
signs), and we will see that this is what prevents us from finding a homomorphism
Aut(Lk/Z) → Aut(Lk).

6.3. The lift. We now define our lift ξk from Ḡk+1
∼= Aut(Lk/Z) to Aut(Lk).

Given an element f ∈ Ḡk+1, we choose a lift f̄ in Mod(S̄k). Since PMod(S̄k) is

normal in Mod(S̄k), conjugation by f̄ induces an automorphism ψf of PMod(S̄k);
this automorphism is well-defined since any two lifts differ by a central element of
PMod(S̄k). We can now define an endomorphism of Lk via the composition πk◦ψf ◦
ιk. To see that this composition of homomorphisms is actually an automorphism
of Lk, we will show that it is surjective. This suffices since Lk is Hopfian, that
is, every surjective endomorphism is an automorphism: braid groups are residually
finite by a result of Grossman and finitely generated residually finite groups are
Hopfian by results of Mal’cev [16].

The homomorphism πk ◦ ψf ◦ ιk clearly induces a surjection from Lk to Lk/Z, and
by the generalized lantern relation, it also induces a surjection Z → Z (z maps to
either z or z−1). It follows that πk ◦ ψf ◦ ιk is a surjection. We are now justified
in calling the composition ξk(f), and this defines our lifting (it is clear that ξk is a
lift). This completes the proof of Theorem 6.

6.4. Generalized Artin generators. The automorphisms of Lk in the image of
ξk do not preserve the conjugacy classes (in A(An)) of the usual generators for Lk:
twists about 2-curves can get mapped to twists about n-curves. Thus, if we want to
understand the image of ξk via the action on generators of Lk, we need to expand
the generating set.
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A generalized Artin generator for Lk is any one of the following elements of Lk:

(1) Ha, where a is a 2-curve.
(2) Ta, where a is a 2-curve.
(3) Ta z

−1, where a is an n-curve with a movable puncture in the exterior.
(4) Ta z

±1, where a is an n-curve with a fixed puncture in the exterior.

For each of the first three types of generalized Artin generators, we denote the
element associated to the curve a by g(a).

Below, we will argue that only the first three types are needed for L1. For Lk with
k > 1, the fourth type of generator is where we see the failure of ξk to be a lift.

Since ι is used in the definition of ξk, we will need to know the images under ι
of the generalized Artin generators (by definition, we only know the images of the
standard ones). Here we only deal with the first three types, since those are the
ones needed for ξ1.

By definition ι(Ha1
) is equal to H̃a1

. Since Ta1,2
= H2

a1
, one can check that

ι(Ta1,2
) = H̃2

a1
is equal to Ta1,2

T−1
d1
T−1

d2
by consulting Figure 5. If h ∈ A(An)

and h⋆(a1,2) = a, then we see that

ι(g(a)) = ι(hHq
a1,2

h−1) = ι(h)ι(Ha1,2
)qι(h)−1 = H̃q

h⋆(a1,2) = H̃q
a

where q ∈ {1, 2}. The third equality holds because ι(h) and h induce the same maps
of C(Dn+1) (which is identified with C(S̄)). As part of our proof of the generalized
lantern relation in Section 7, we will use our understanding of the action of ι on
each Ha and H2

a to show that if a is a curve surrounding each puncture but the ith

and α = ±1, then ι(Taz
−1) is equal to TaTdi

T−1
dn+2

.

6.5. Automorphisms of A(Bn). Recall that A(Bn) is isomorphic to L1, and
that A(Bn) is generated by elements si where s1 = Ta1

and si = Hai
for i > 1. We

now compute the transvection subgroup of Aut(A(Bn)) and show that our lifting
ξ1 from Ḡ2

∼= Aut(A(Bn)/Z) to Aut(L1) ∼= Aut(A(Bn)) is a homomorphism.

In Section 5, we classified all transvections of A(Bn) in terms of two integers, u
and v. These were defined by s1 7→ s1z

u and s2 7→ s2z
v. We also found that

z 7→ z1+nu+n(n−1)v. Again, in order for a transvection to be an automorphism, we
need z 7→ z±1. We see that z 7→ z if and only if nu + n(n− 1)v = 0 and z 7→ z−1

if and only if nu + n(n− 1)v = −2. The latter case actually cannot happen, since
nu+ n(n− 1)v is divisible by n ≥ 3 while −2 is not. Thus, Tv(A(Bn)) ∼= Z.

We now want to show that ξ1 is a splitting of the sequence (1). Recall that ǫ : Ḡ2 →
Z2 is the homomorphism which records whether or not elements are orientation
preserving.

We take as a generating set for L1 the generalized Artin generators of the first three
types (this contains the usual generating set). Let f ∈ Ḡ2

∼= Aut(L1/Z). We claim
that we have the following simple formula for the action of ξ1(f) on the first three
types of generalized Artin generators of L1:

ξ1(f)(g(a)) = g(f⋆(a))
ǫ(f)
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It follows that ξ1 is a homomorphism.

By the moving punctures criterion, f can only switch the puncture corresponding to
∂Dn+1 with the puncture corresponding to the fixed puncture of Dn+1. Therefore,
ξ(f) preserves the set of generalized Artin generators of the first type. Also, ξ(f)
either preserves or interchanges the second and third types, depending on whether
or not f preserves the puncture of Sn+2 corresponding to ∂Dn+1.

Checking the above formula is straightforward. Applying ι1 to g(a) yields a “push
map” (see Section 7); composing with ψf gives a push map which is conjugate in

PMod(S̄k); finally, π1 gives g(f⋆(a)). A more formal argument is to simply apply
our computation of ι(g(a)) given above. For example, if g(a) is of the first type,
then we have:

ι1(g(a)) = H̃a

ψf ◦ ι1(g(a)) = H̃
ǫ(f)
f⋆(a)

ξ1(f)(g(a)) = π1 ◦ ψf ◦ ι1(g(a)) = H
ǫ(f)
f⋆(a) = g(f⋆(a))

ǫ(f)

The key point is that, since f ∈ Ḡ2, and a does not have the first (fixed) puncture
in its interior, f⋆(a) is also a 2-curve which does not have the first puncture in its
interior. The other cases are nearly identical.

We now have that Aut(A(Bn)) ∼= Ḡ2 n Z. The group Ḡ2 is isomorphic to (Z2 ×
Z2) n G2, where, as in the introduction, the group G2 is the group of orientation
preserving elements of Ḡ2 which fix two particular punctures. Thus, we can write
Aut(A(Bn)) as ((Z2 × Z2) n G2) n Z. As noted by Charney–Crisp, the elements
of G2 commute with the transvections of Aut(A(Bn)), and so, finally, we obtain
Theorem 7: Aut(A(Bn)) ∼= (Z2 × Z2) n (G2 × Z).

Remarks. In the special case of k = 1, we can give a more straightforward
definition of the lift ξk. Given an f ∈ Ḡ2, we define ξ1(f) directly by the formula
ξ1(f)(g(a)) = g(f⋆(a))

ǫ(f). Using the presentation of A(Bn), and the generalized
lantern relation, one can directly check that this defines a homomorphism Ḡ2 →
Aut(A(Bn)).

Although not necessary for the proof, we can write down a formula for the action

of ξ1(f) on the fourth type of generator: ξ1(f)(Taz
α) = (Tf⋆(a)T

αδ(f)
dn+2

)ǫ(f), where δ

is the homomorphism to Z2 which records the action of f on the two punctures of
Sn+2 which are fixed setwise by Ḡ2.

6.6. The case k > 1. We now argue that ξk is not a homomorphism for k > 1.
Surprisingly, there is a different lifting for the case Ln+1

∼= P (An) which is a
splitting (see below).

Let a be a curve in Dn+1 which surrounds all punctures except the first. Let
g ∈ Mod(Sn+2) ∼= Aut(P (An)/Z) be an element whose lift ḡ ∈ Mod(S̄) satisfies
ḡ(d1) = d1 and ḡ(dn+2) = d2. Similarly to our calculations for A(Bn), we can check
that ξk(g) takes Taz

−1 to Tg⋆(a). Let f ∈ Ḡk
∼= Aut(Lk) be such that f ◦ g(a) = a,
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but f̄ ◦ ḡ(d1) = dn+2 and f̄ ◦ ḡ(dn+2) = d1. Then ξk(f) takes Tg⋆(a) to Taz
−1.

However, ξk(fg) takes Taz
−1 to Taz. Thus, ξk is not a homomorphism.

6.7. Automorphisms of P (An). A surprising and fundamental fact about P (An)
is that this group splits as a direct product over its center. The isomorphism
P (An) → P (An)/Z × Z is noncanonical and is given as follows.

Ta1,2
7→ (Ta1,2

, 1)

Tai,j
7→ (Tai,j

, 0) for (i, j) 6= (1, 2)

It is straightforward to check that this is an isomorphism; the key facts are that
the relations for P (An) are commutators and that Ta1,2

appears exactly once in the
standard word representing the generator for the center of P (An).

In general, when a groupG splits over its center, its automorphism group is a semidi-
rect product Aut(G/Z)nTv(G). It is a theorem of Korkmaz that Aut(P (An)/Z) ∼=
Mod(Sn+2) (our Theorem 1 is a generalization).

The transvection subgroup can be computed directly. Using the notation of Sec-
tion 5, we can choose integers ti,j so that z maps to either z or z−1. Thus, there
is a surjective map Tv(P (An)) → Z2 given by this action on the center. The ker-
nel of this map consists of those transvections with

∑
ti,j = 0. As in Section 5,

there are N =
(

n+1
2

)
of the ti,j , and so this kernel is isomorphic to ZN−1. There

is a splitting Z2 → Tv(P (An)) (set t1,2 = −2 and all other ti,j = 0), and so
Tv(P (An)) ∼= Z2 n ZN−1. This completes the proof of Theorem 8.

7. Generalized lantern relation

We now prove the “generalized lantern relation”, used in Section 6. We freely use
the notation of that section. Also, we make a point of recalling that, contrary to the
usual convention for braid groups, we use functional notation for the composition
of mapping classes.

Our goal is to understand ι(z). We think of z as a product of elements

gi = Tai,n+1
· · ·Tai,i+2

Tai,i+1

and we will first understand each ι(gi) individually. We draw S̄ in the plane as in
Section 6. This allows us to see the ai,j in S̄ exactly as they appear in Dn+1.

Figure 8. A relation between push maps.
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We can think of each Tai,j
as a push map, where the ith boundary component moves

around the jth boundary component, while travelling clockwise inside ai,j in such
a way that it never turns (Figure 5 represents the halfway point).

We can thus think of gi as a product of these push maps (the solid arrows in
Figure 8). We now see the following intuitive relation: gi can also be obtained by
pushing the ith boundary component around the n − i + 1 boundary components
to its right all at once (the dashed arrow in Figure 8). We then observe that this
latter push map is equivalent to

T−1
ci+1,n+1

T−1
di
Tci,n+1

where the curves are as shown in Figure 9. This intuitive relation (which is already
an interesting relation in the mapping class group) is explained more formally in
the remark below (see also [30, 33]).

ci,n+1

ci+1,n+1

di

Figure 9. The curves needed to write gi as a product of Dehn twists.

We can now compute ι(z) as the product of the ι(gi):

(T−1
cn+1,n+1

T−1
dn
Tcn,n+1

) · · · (T−1
c3,n+1

T−1
d2
Tc2,n+1

)(T−1
c2,n+1

T−1
d1
Tc1,n+1

)

All of the Tci,j
elements cancel except the first (rightmost), which is equal to Tdn+2

,

and the last, which is equal to T−1
dn+1

. Thus, ι(z) is equal to the product of Tdn+2

with T−1
d1

· · ·T−1
dn+1

, and this is exactly the generalized lantern relation.

We notice that, applying the map π to ι(z), we see that we have proven that the
product of the gi is indeed equal to z in P (An).

Also, since ι takes conjugates of the Tai,j
to the corresponding conjugates of the

ι(Tai,j
), the same holds for the conjugates of the gi. This fact was used in Section 6.

Remark. We now explain a more formal framework for proving the intuitive
relation that pushing a disk around two loops is the same as pushing it around a
composite loop. Let X be the subset of the configuration space of n + 1 ordered
points in the unit tangent bundle of the disk, where each point lies in a different
fiber. There is a natural map from π1(X) → Mod(S̄) (the projection to the disk
of each point in X specifies the location of a particular boundary component and
the vector specifies the rotation; if we like, we can replace boundary components
with rigid disks in the sphere). The relation described above simply follows from
the fact that this map is a homomorphism. Putman has observed that relations in
π1(X) thus give rise to many different “generalized lantern relations” [33].
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Appendix A. Superinjective maps of curve complexes

In this section, let S = Sg,n be an orientable surface of genus g with n punctures.
Throughout, we tacitly assume that all surfaces have negative Euler characteristic
(the curve complex is uninteresting otherwise). We define the complexity of Sg,n to
be 3g + n− 3; for the surfaces under consideration this is the number of curves in
a pants decomposition.

We define the curve complex C(S) as the abstract simplicial flag complex with
vertices corresponding to isotopy classes of essential curves in S (or simply “curves”)
and edges corresponding to curves in S which have the smallest possible geometric
intersection number in S. For S0,4, the minimal intersection is 2; for S1,1, the
minimal intersection is 1; and for all other S with C(S) nonempty, the minimal
intersection is zero, as in the main body of this paper.

A.1. Statement of theorem. Our main goal is to prove the following.

Theorem 16. Let S = Sg,n and S′ = Sg′,n′ be two surfaces of the same complexity.
Any superinjective map φ : C(S) → C(S′) is surjective.

Superinjective maps are easily seen to be injective (given two vertices, there is a
vertex connected to one but not the other), so it follows that superinjective maps
are automorphisms. We can then apply the theorem of Ivanov, Korkmaz, and Luo
that if S is any surface of negative Euler characteristic other than S1,2, then each
automorphism of C(S) is induced by Mod(S) [22, 26, 28]. The result is that, for
these surfaces, superinjective maps of C(S) are induced by Mod(S); this is the
general case of Theorem 2. As a consequence, one can deduce the corresponding
generalization of Theorem 1 (see [3] for precise statements).

Theorem 16 actually implies a more general theorem, due to Shackleton: there
are no injective homomorphisms from a finite index subgroup of the mapping class
group of one surface to a mapping class group of another surface with equal or
smaller complexity, if the curve complexes are not isomorphic [34].

We also give an elementary proof of the classification of curve complexes [28]; that
is, the only isomorphic curve complexes are

C(S1,1) ∼= C(S0,4) C(S1,2) ∼= C(S0,5) C(S2,0) ∼= C(S0,6).

Historical remark. There are a number of papers on automorphisms and super-
injective maps of the curve complex. Different versions of this paper appeared at
various points in the progression of ideas. The theorems stated in the introduction
were new theorems when the first version of this paper were written. The more
general statements and proofs given in this appendix came later. We keep the old
statements in the introduction to preserve this paper’s place in the history, but
present the newer proofs in this appendix because they are both simpler and more
general.

In brief, Ivanov first proved the automorphism theorem for surfaces of genus at least
2 [22], then Korkmaz proved it for genus 0 and 1 [26]. Around the same time, Luo
gave a completely different proof for all surfaces, and also settled the case of the



20 ROBERT W. BELL AND DAN MARGALIT

twice punctured torus [28]. Irmak proved the superinjective theorem for surfaces
of genus at least 2 [18, 20, 19]. Later, the first version of this paper proved the
superinjective theorem for genus 0 [4], and Behrstock–Margalit proved it for genus
1 [3]. Finally, Shackleton proved that an injective simplicial map between curve
complexes of the same dimension is an isomorphism [34].

A.2. Proof of theorem. We now begin our proof of Theorem 16, which is an
induction on complexity. First we deal with the lowest complexity cases. For the
surface of complexity 0, namely S0,3, Theorem 16 is vacuously true, since C(S0,3)
is empty.

Farey graphs. For surfaces of complexity 1 (S1,1 and S0,4), Theorem 16 is a
well known fact. In these cases, C(S) is the Farey graph, or ideal triangulation of
the disk (see [32]), and one readily checks that any injective simplicial map of the
Farey graph is surjective.

Lemma 17. Let S and S′ be complexity 1 surfaces. Every superinjective map
φ : C(S) → C(S′) is surjective.

From this point forward, let S and S′ be fixed surfaces of the same complexity ≥ 2,
and let φ : C(S) → C(S′) be a fixed superinjective map.

Adjacency graph. To proceed by induction on complexity, the main step is to
show that φ preserves the complexity of a curve c, by which we mean the minimum
positive complexity of a component of S− c. A useful tool for this is the adjacency
graph, which is a graph G(P) associated to a pants decomposition P . It has a
vertex for every element of P , and an edge if the corresponding curves are boundary
components of the same pair of pants in S. Note that G(P) is always connected.

Since φ is injective, it maps a pants decomposition P to a pants decomposition
φ(P) and induces a map from the vertices of G(P) to the vertices of G(φ(P)). In
fact, more is true.

Lemma 18. Let P be a pants decomposition for S. The map φ induces a graph
isomorphism G(P) → G(φ(P)).

The adjacency graph was introduced by Behrstock–Margalit, and also by Shackle-
ton [3, 34].

Proof. Let a and b be two curves and P = {a, b, c1, . . . , ck} a pants decomposition
for S. If a and b, say, are connected by an edge in G(P), then we can find a vertex
z of C(S) which is not connected to a or b but is connected to ci for all i, i.e., z
intersects a and b but no other elements of P (we identify vertices of G(P) with
vertices of C(S) and with curves in S). Thus, φ(a) and φ(b) must be connected by
an edge in G(φ(P)).

If a and b are not connected by an edge in G(P), then there are curves a1 and b1
so that, if we set a0 = a and b0 = b, the set of curves {ai, bj , c1, . . . , ck} is a pants
decomposition for any of the 4 choices for i and j. In other words, (a0, b0, a1, b1),
in that order, form a square in C(S − ∪ci). If φ(a) and φ(b) are connected by an
edge in G(φ(P)), then φ(a) and φ(b) lie on a connected complexity 2 component of
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S′ − ∪φ(ci). However, C(S0,5) ∼= C(S1,2) contains no squares. Thus, φ(a) and φ(b)
cannot be connected by an edge in G(φ(P)). ˜

As an immediate consequence, we have the desired lemma about curve complexity.

Lemma 19. For any curve c, φ(c) has the same complexity as c.

Proof. Let c be any curve in S and P any pants decomposition containing c. Com-
plexity can be read off from G(P)—remove the vertex c and all (open) edges emanat-
ing from c, and count the number of vertices in each of the remaining components.
Thus, an application of Lemma 18 completes the proof. ˜

Simple pairs. Two curves a and b form a simple pair in S if there is a pants
decomposition P = {a, c0, . . . , ck} so that b is also disjoint from the ci, and a and b
are connected by an edge in the curve complex for the complexity 1 component of
S − ∪ci. The following lemma was proven in the case of nonseparating curves by
Ivanov in his original work concerning automorphisms of C(S) [23, Lemma 1].

Lemma 20. If a and b form a simple pair of curves in S, then φ(a) and φ(b) form
a simple pair.

Proof. Let P = {a, c0, . . . , ck} be a pants decomposition which comes from the
definition of simple pairs. We assume that a and c0 are connected in G(P), and
we consider the complexity 2 component F of S −{c1, . . . , ck}. Let us first assume
that F is S0,5.

We claim that a and b form a simple pair if and only if they are nonadjacent points
of some pentagon in C(S0,5). One direction is easily exhibited by construction. The
other direction is left as an exercise; see [5] for a proof.

Since φ preserves all of the properties used in this characterization of simple pairs,
we are done in the case of S0,5. Since C(S0,5) ∼= C(S1,2), and the isomorphism
takes simple pairs to simple pairs (the isomorphism is induced by the hyperelliptic
involution of S1,2; see [28]), the proof is complete. ˜

We are now ready to prove the theorem.

Proof of Theorem 16. As advertised, we proceed by induction on the complexity of
S. The base step is Lemma 17. Now suppose that the complexity of S is greater
than 1, and that the theorem is true for all surfaces of smaller complexity.

Let c be any curve in S. By Lemma 19, φ(c) has the same complexity. It then follows
from consideration of the adjacency graph that φ induces maps from the curve
complexes of the component(s) of S − c to the curve complexes of the components
of S′−φ(c). What is more, the induced maps are superinjective: for components of
complexity 1 this follows from Lemma 20 and for components of complexity greater
than 1 it is obvious (we simply throw out components of complexity zero). The
components of S − c have complexity strictly smaller than that of S and so by
induction φ restricts to surjective maps of the corresponding curve complexes.
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As a result, we see that for every curve in S′ which is in the image of φ, the closed
star of that vertex in C(S′) is in the image of φ. Since C(S′) is connected, φ is
surjective. ˜

A.3. Classification. We now apply Lemmas 19 and 20 to give a simple proof of
the classification of isomorphic curve complexes. Of course, automorphisms are
superinjective, so we may freely use this lemma.

Theorem 21. Aside from the pairs (S1,1, S0,4), (S1,2, S0,5), and (S2,0, S0,6), no
two surfaces of negative Euler characteristic have isomorphic curve complexes.

In each of the three exceptional cases, the isomorphism is induced by the hyperel-
liptic involution of the surface of positive genus (see [28]).

Proof. Since isomorphic curve complexes have the same dimension, it suffices to
show that the genus of S = Sg,n can be detected in C(S). Given the list of isomor-
phic curve complexes, we may assume that the complexity of S is at least 3, and
that S is not S2,0.

The first step is to show that nonseparating curves can be recognized in C(S).
Nonseparating curves are almost characterized by the fact that they are not cut
points in any adjacency graph; in other words, their complexity is one less than the
complexity of S. The only other curves which satisfy this property are curves which
cut off a twice-punctured disk in S. One difference between these two kinds of curves
is that a nonseparating curve can be dual to three disjoint curves simultaneously
(this fails for S2,0), while for a curve which bounds a twice-punctured disk, this is
impossible.

But now the genus of S is simply the maximum number of simultaneously disjoint
nonseparating curves in S, so we are done. ˜

A.4. Automorphisms. Finally, we say a few words about the proofs of the theo-
rem that automorphisms of C(S) are induced by Mod(S). Ivanov’s original approach
was to show that an automorphism of C(S) induces an automorphism of an associ-
ated arc complex, and then apply the fact that automorphisms of the arc complex
are determined by the action on a single maximal simplex. Luo gives an inductive
proof, also making use of an algebraic structure on the vertices of C(S): two curves
are “multiplied” via surgery, and so it suffices to understand the automorphism on
a generating set.

Building on this idea, Shackleton gives a purely topological inductive approach
as follows. Let a be a curve in S. Since the topological type of a is preserved
(as above), there is an induced automorphism of C(S − a) which, by induction, is
induced by Mod(S − a). To this element of Mod(S − a) corresponds a 〈Ta〉 coset
in Mod(S). To pin down a particular element, one repeats the procedure with a
curve b disjoint from a. The intersection of the two cosets is a single mapping class,
which, a priori, depends on a and b. One then chooses a curve c which is connected
to b in C(S − a) and shows that the mapping class associated to a, b is the same
as that associated to a, c. By connectedness of C(S), the proof is complete. For
details, see Shackleton’s paper (what he calls “the inductive step”) [34].
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