
BRAID GROUPS AND THE CO-HOPFIAN PROPERTYROBERT W. BELL AND DAN MARGALITJune 18, 2005Abstract. Let Bn be the braid group on n � 4 strands. Weprove that Bn modulo its center is co-Hop�an. We then showthat any injective endomorphism of Bn is geometric in the sensethat it is induced by a homeomorphism of a punctured disk. Wefurther prove that any injection from Bn to Bn+1 is geometric forn � 7. Additionally, we obtain analogous results for mapping classgroups of punctured spheres. The methods use Thurston's theoryof surface homeomorphisms and build upon work of Ivanov andMcCarthy. 1. IntroductionThe braid group on n strands is the group of isotopy classes of orien-tation preserving homeomorphisms of the n-times punctured disk Dnwhich are the identity on the boundary:Bn = �0(Homeo+(Dn; @Dn))Bn is generated by half-twists; each such generator Ha is the isotopyclass of a homeomorphism of Dn which switches two punctures alongan arc a (see Section 3).A group is co-Hop�an if every injective endomorphism is an isomor-phism. We see that Bn is not co-Hop�an: any map which takes eachhalf-twist Ha to the product Hazt (where z generates the center Z ofBn and t is �xed nonzero integer) is injective, but not surjective.2000 Mathematics Subject Classi�cation. Primary: 20F36; Secondary: 57M07.Key words and phrases. braid groups, mapping class groups, co-Hop�an.Both authors are partially supported by a VIGRE postdoctoral position underNSF grant number 0091675 to the University of Utah.1



2 ROBERT W. BELL AND DAN MARGALITGiven a homeomorphism (or an isotopy class) h of an oriented surface,let �(h) equal 1 if h preserves the orientation of the surface, and let�(h) equal �1 otherwise.Main Theorem 1. Let n � 4. Any injective endomorphism � of Bnis induced by a homeomorphism h : Dn ! Dn in the following sense:there is a �xed integer t so that�(Ha) = H�(h)h(a) ztfor each half-twist Ha.For any homeomorphism h of Dn and integer t, there is an injective en-domorphism � as in the theorem. The map � is not surjective whenevert 6= 0 (nothing maps to z).Braid groups are Hop�an|every surjective endomorphism is an iso-morphism: Bigelow and Krammer showed that braid groups are linear[3] [23]; and by well-known results of Mal'cev, �nitely generated lin-ear groups are residually �nite, and �nitely generated residually �nitegroups are Hop�an.Lin has shown that for k < n 6= 4, any homomorphism from Bn to Bkhas cyclic image [25]. We characterize injective homomorphisms of Bninto Bn+1 (see Section 3 for the de�nition of a Dehn twist):Main Theorem 2. Let n � 4. Any injective homomorphism � : Bn !Bn+1 is induced by an embedding h : Dn ! Dn+1 in the following sense:there are �xed integers s and t so that�(Ha) = H�(h)h(a) T sAztfor each half-twist Ha, where TA denotes the Dehn twist about the curveA = h(@Dn).To prove this theorem, we introduce the arc triple complex A3(Dn)(refer to Section 8) and prove that this complex is connected for n � 7.The cases where n < 7 require special consideration.Our starting point is Main Theorem 3 (below), which says that everyinjective endomorphism of Bn=Z is induced by a homeomorphism ofDn. To make sense of this we use the fact that Bn=Z is isomorphic to�0(Homeo+(Dn)). In general, the mapping class group of a surface Sis de�ned as: Mod(S) = �0(Homeo+(S))



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 3Main Theorem 3. Let n � 4. The group Bn=Z is co-Hop�an, andany injective endomorphism � of Bn=Z is induced by a homeomorphismh of Dn in the sense that �(Ha) = H�(h)h(a)for each half-twist Ha.We will deduce Main Theorem 1 as a corollary of Main Theorem 3 inSection 2. The proofs of our Main Theorems 3 and 2 follow the basicstrategy of the following theorem of Ivanov and McCarthy [19]:Theorem 1.1. If S is a compact orientable surface which has posi-tive genus and is not a torus with 0, 1, or 2 boundary components,then Mod(S) is co-Hop�an. Moreover there are no injective homomor-phisms Mod(S)! Mod(S 0) where S 0 is the surface obtained from S byremoving an open disk.The reader should contrast the above theorem with Main Theorem 2,where there do exist injective homomorphisms between di�erent braidgroups.Note that B3=Z �= PSL2(Z) �= Z2 � Z3 is not co-Hop�an. Crisp andPaoluzzi have recently established the co-Hop�an property for B4=Z,by showing that it has an essentially unique CAT(0) structure [10].As another corollary of Main Theorem 3, we obtain the analog of thetheorem of Ivanov and McCarthy for genus zero surfaces:Theorem 1.2. If S is a sphere with n � 5 punctures, then Mod(S)is co-Hop�an, and there are no injective homomorphisms Mod(S) !Mod(S 0), where S 0 is a sphere with n+ 1 punctures.The results of this paper can be used to recover the classical theo-rems that Out(Bn) �= Z2 and Out(Mod(S)) �= Z2 for S a sphere withn + 1 punctures (n � 4). Both were originally obtained by Dyer andGrossman via algebraic methods [11], and later proven by Ivanov usingThurston's theory [17]. In related work, Korkmaz proved that the ab-stract commensurator of Bn=Z is isomorphic to Aut(Bn=Z), and thatany endomorphism ofBn=Z with �nite-index image is an automorphism(n � 4) [22].A key phenomenon which allows us to promote algebraic embeddingsto topological ones is the fact that all algebraic braid relations betweenhalf-twists look topologically the same (Lemma 4.9).



4 ROBERT W. BELL AND DAN MARGALITOutline. Section 2 gives the proof of Main Theorem 1, assuming MainTheorem 3. In Section 3 we give de�nitions and basic constructionsused in the proofs of Main Theorems 2 and 3. Section 4 explores theinterplay between the algebra and topology of half-twists in Bn.Section 5 is the proof of Main Theorem 3. There are three mainsteps:� Step 1: Any injective endomorphism � of Bn=Z is almosthalf-twist preserving: it takes some power of any half-twistto a power of a half-twist� Step 2: � is actually half-twist preserving� Step 3: � is induced by a homeomorphism of DnIn Section 6, we prove Main Theorem 2 using the same strategy. Weexplain how to translate the main theorems to mapping class groupsof punctured spheres in Section 7.We then de�ne the arc k-tuple complex in Section 8 and prove that itis connected (this is used in Section 6). In Section 9 we ask questionsrelated to this work.Acknowledgements. We wish to thank Jason Behrstock, MladenBestvina, Tara Brendle, Martin Bridson, Ryan Budney, Fred Cohen,Benson Farb, Edward Formanek, Steve Gersten, Allen Hatcher, NikolaiIvanov, Richard Kent, Mustafa Korkmaz, William Thurston, DomingoToledo, and Kevin Wortman for helpful conversations and for com-ments on earlier drafts. We are indebted to Joan Birman for directingus to her paper with Hugh Hilden, and for many insightful and enthu-siastic correspondences.Near the start of this work, Vladimir Lin sent us examples of injectiveendomorphisms of the braid group which are not surjective. ChrisLeininger was extremely generous with his time and energy in readingour paper, suggesting modi�cations, and working on the special casesof the second main theorem.The second author is especially grateful to Joan Birman, Benson Farb,and Kevin Wortman for encouragement on this project.



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 52. Bn is almost co-HopfianAssuming Main Theorem 3, we now prove Main Theorem 1.Proof. Since �(Z) < Z (by Lemma 2.3 below) and ��1(Z) < Z (as � isinjective), there is a well-de�ned injective homomorphism � : Bn=Z !Bn=Z. By Main Theorem 3, � is an isomorphism induced by a home-omorphism h of Dn: �(Ha)Z = �(HaZ) = H�(h)h(a)Z�(Ha) = H�(h)h(a)ztaThe exponent ta is independent of a, since all half-twists are conjugate.̃We will require the following theorem of de Ker�ekj�art�o, Brouwer, andEilenberg [21] [9] [12]:Theorem 2.1. Any �nite order homeomorphism of a disk or a sphereis conjugate (via a homeomorphism) to a Euclidean isometry.The Nielsen realization theorem says that any �nite order element ofMod(Dn) can be realized by a �nite order homeomorphism [20]. Sincez is the identity as an element of Mod(Dn), the following is a corollaryto Theorem 2.1:Corollary 2.2. Any root of a central element of Bn is conjugate to apower of one of the elements � or 
 of Figure 1.

Figure 1. The roots � and 
 of z.



6 ROBERT W. BELL AND DAN MARGALITLemma 2.3. If � : Bn ! Bn is an injective homomorphism, then�(Z) < Z.Proof. Let G be a free abelian subgroup of maximal rank containing z.Then �(G) is also of maximal rank, and hence �(G) \ Z is nontrivial.Since ��1(Z) < Z, we have �(z)k 2 Z for some k. By Corollary 2.2,�(
) and �(�) are conjugate to powers of � and 
. Also observe that �konly �xes a puncture of Dn if k is a multiple of n, whereas every powerof 
 �xes at least one puncture of Dn.If �(�) is conjugate to a power of �, then �(z) = �(�n) is central.Similarly, if �(
) is conjugate to a power of 
, then �(z) = �(
n�1) iscentral. Thus, we can assume that �(�) is conjugate to a power of 
,and vice versa.In this case, �(z) is conjugate to both a power of 
 and a power of�. But by considering �xed punctures, the only conjugate powers of 
and � are central. Therefore, �(z) 2 Z.
˜Remark. The braid groups exhibit a general obstruction to the co-Hop�an property: if G is a group with a homomorphism L : G ! Zand an in�nite order central element z with L(z) =2 f0;�1;�2g, thenthe endomorphism given by: g 7! gzL(g)is injective but not surjective. Finite-type Artin groups are examples,where L is taken to be the usual length homomorphism.3. BackgroundIn this section we introduce ideas from mapping class groups (Thurstontheory) and explain their connection to braid groups. Throughout thepaper, we use functional notation for words in Bn.Curves and arcs. The interior of a simple closed curve in Dn is thecomponent of its complement which does not contain the boundarycircle of Dn. A simple closed curve in Dn is nontrivial if it containsmore than one puncture, but not all n punctures, in its interior. A 2-curve is a simple closed curve with exactly two punctures in its interior.



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 7By an arc in Dn, we always mean a simple arc connecting two distinctpunctures (its ends).When convenient, we confuse curves and arcs with their isotopy classes.There is a bijection of isotopy classes:f2-curvesg  ! farcsgWe use i(a; b) to denote the geometric intersection number of curves aand b.Dehn twists. The Dehn twist about a curve a is the mapping class(isotopy class of homeomorphisms) Ta whose support is an annularneighborhood of a and whose action on the annular neighborhood isdescribed by Figure 2. The center of Bn is generated by z, the Dehntwist about @Dn.
a

Figure 2. Dehn twist about a curve a.Amultitwist is a product of powers of Dehn twists about disjoint curves.Half-twists. By a half-twistHa along an arc a, we mean the mappingclass with support the interior of a 2-curve, as described in Figure 3.
a aFigure 3. Half-twist about an arc a.In light of the bijection between 2-curves and arcs, we may refer to ahalf-twist with respect to either an arc or a 2-curve. Note that H2a = Tafor a 2-curve a.



8 ROBERT W. BELL AND DAN MARGALITAdjacency. Two disjoint arcs in Dn are said to be adjacent if theyshare exactly one end. This is equivalent to the condition that thecorresponding 2-curves have geometric intersection number 2 (we alsocall such 2-curves adjacent).Conjugation. If f 2 Mod(S), then fHjaf�1 = Hjf(a). It follows that:Fact 3.1. For j 6= 0, [f;Hja] = 1 () f(a) = a.Pseudo-Anosov. By Thurston's classi�cation, a mapping class f ispseudo-Anosov if and only if fk(a) 6= a for every simple closed curvea and any nonzero integer k. This is our working de�nition of pseudo-Anosov. By work of Ivanov, the centralizer of a pseudo-Anosov map-ping class is virtually cyclic [18].Reductions. If an element f of Mod(S) �xes a collection C of disjointcurves in S, then there is a representative homeomorphism for f which�xes a set of representatives for C. This gives rise to a well-de�nedelement fC of Mod(SC), called the reduction of f along C, where SC isthe surface obtained by cutting S along the representatives for C. Notethat any twist about a curve of C becomes trivial in the reduction.Pure mapping classes. An element f of Mod(S) is called pure if ithas a reduction fC which induces the trivial permutation on the com-ponents of SC, acts as the identity on the boundary (�xing puncturesas well), and restricts to either the identity or a pseudo-Anosov mapon each such component (see [18]). In the case of a punctured disk,the set of pure mapping classes coincides with the classical pure braidgroup PBn (see e.g. [4]):Theorem 3.2 (Irmak-Ivanov-McCarthy [15]). The elements of PBn=Zare pure in the above sense.Canonical reduction systems. A curve a is in the canonical re-duction system for a pure mapping class f if f(a) = a, and f(b) 6= bwhenever i(a; b) > 0. This notion is due to Birman, Lubotzky, andMcCarthy [8].We have a generalization of Fact 3.1 which follows from the de�nitionabove:Lemma 3.3. If [f; g] = 1, and C is the canonical reduction system forg, then f(C) = C.



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 9Finally, we give a modi�cation of Lemma 10.2 of the paper of Ivanovand McCarthy ([19]). This will be used in the proofs of the maintheorems. By the rank of a group �, denoted rk(�), we mean themaximal rank of a free abelian subgroup.Lemma 3.4. Let � : � ! �0 be an injective homomorphism. Supposethat rk �0 = rk�+R <1 for some non-negative integer R. Let G < �be an abelian subgroup of maximal rank, and let f 2 G. ThenrkZ(C�0(�(f))) � rkZ(C�(f)) +RProof. Let A = �(G)\Z(C�0(�(f))), and letB = h �(G); Z(C�0(�(f))) i.B�(G) Z(C�0(�(f)))ANote that all of the groups in the above diagram are abelian. We have:�(G) � C�0(�(f))Thus, we have:rk �(G) + rkZ(C�0(�(f))) = rkA+ rkB� rkA+ rk�0= rkA+ rk� +R= rkA+ rkG+R= rkA+ rk �(G) +RTherefore, rkZ(C�0(�(f))) � rkA+ R.Observe that A � Z(C�(�)(�(f))). But this latter group is isomorphicto Z(C�(f)). Combined with the previous inequality, this completesthe proof.
˜



10 ROBERT W. BELL AND DAN MARGALIT4. RelationsWe use a double cover argument of Birman and Hilden to draw ananalogy between braid groups and mapping class groups of higher genussurfaces.Marked points. Let DP be a disk with a set P of n marked points.There is a natural isomorphism:Mod(Dn) �= Mod(DP)where homeomorphisms of DP are required to �x P as a set.Double cover. If n is odd, then there is a 2-sheeted branched coverover DP by a surface fDP with genus n�12 and one boundary circle (themarked points are the branch points). The covering transformation isan involution � switching the two sheets. If n is even, then we take fDPto be a surface with genus n�22 and two boundary circles. See Figure 4.We note that since we only consider Bn for n � 4, we have that fDP iseither a torus with two boundary circles or it has genus greater thanone.

Figure 4. The covering fDP ! DP for n odd and n even.Symmetric mapping class group. Let SMod(fDP) denote thecentralizer of � in Mod(fDP). Birman and Hilden prove the following[5] [7]:Theorem 4.1. Mod(DP) �= SMod(fDP)=h�i.Birman and Hilden state this theorem for a covering of a closed surfaceof genus g over a sphere with 2g + 2 marked points. But their proofholds verbatim in our case (see also [6]).



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 11The isomorphism of Theorem 4.1 can be described explicitly on gen-erators. Any half-twist in Mod(DP) about an arc a corresponds to aDehn twist about the simple closed curve ~a which is the lift of a to fDP .From Dehn twists... We now use Theorem 4.1 to translate relevantfacts about Dehn twists in surface mapping class groups to facts abouthalf-twists in braid groups. Here are the statements about Dehn twists(j and k are nonzero integers):Lemma 4.2. T ja = T kb , a = b and j = k.Lemma 4.3. [T ja ; T kb ] = 1, i(a; b) = 0.Lemma 4.4 (Ivanov{McCarthy [19]). Distinct Dehn twists Ta and Tbsatisfy T jaT kb T ja = T kb T jaT kbif and only if i(a; b) = 1 and j = k = �1.In the next theorem, F2 denotes the free group on two letters.Theorem 4.5 (Ishida [16], Hamidi-Tehrani [13]). hT ja ; T kb i fl F2 ,i(a; b) = 0 or i(a; b) = 1 and fj; kg 2 ff1g; f1; 2g; f1; 3gg....to half-twists. The following lemma is the desired correspondencebetween twist relations in surface mapping class groups and half-twistrelations in braid groups.Lemma 4.6. Powers of half-twists Hja and Hkb satisfy a relation inMod(DP) if and only if the corresponding powers of twists T j~a and T k~bsatisfy the same relation in Mod(fDP).Proof. Suppose some word W (Hja; Hkb ) in Hja and Hkb equals the iden-tity in Mod(DP). By Theorem 4.1, we have W (T j~a ; T k~b ) = ��, soW (T j~a ; T k~b )2 = 1 in SMod(fDP) (and hence in Mod(fDP)). Then Theo-rem 4.5 implies that i(~a;~b) � 1. So there is a homeomorphism repre-senting W (T j~a ; T k~b ) whose support is either a pair of annuli or a toruswith one boundary circle. On the contrary, � has no such representa-tive (recall that fDP is \at least" a torus with two boundary circles), so� = 0, and W (T j~a ; T k~b ) = 1. The other direction is trivial.
˜



12 ROBERT W. BELL AND DAN MARGALITCombining Lemma 4.6 with Lemmas 4.2-4.4, we have, for j and knonzero:Lemma 4.7. Hja = Hkb , a = b and j = k.Lemma 4.8. [Hja; Hkb ] = 1, i(a; b) = 0.Lemma 4.9. Distinct half-twists Ha andHb satisfy HjaHkbHja = HkbHjaHkbif and only if a and b are adjacent and j = k = �1.For this lemma, it su�ces to note that the condition of adjacency ofarcs in DP is equivalent to the lifts of the arcs having intersectionnumber 1.Remark. Lemmas 4.6 through 4.9 hold not only for Bn=Z, but alsoin the contexts of Bn and Mod(S) for S a sphere with n punctures:Braid groups. If n � 4, two half-twists satisfy a relation in Bn if andonly if they satisfy the same relation in Bn=Z.Punctured spheres. If W (Ha; Hb) is a word in the half-twists about aand b which represents the identity in Mod(S), then we can choose apuncture p which is not an end of a or b (if n � 5). Then, W (Ha; Hb) isalso the identity in the subgroup of Mod(S) consisting of maps which�x p. But this subgroup is isomorphic to Bn�1=Z.Remark. Lemma 4.9 is an algebraic characterization of geometricintersection number 2 (for 2-curves). Another approach is to applya theorem of Hamidi-Tehrani and the second author which says, inthe case of nondisjoint curves a and b in Dn, that T jaT kb is equal to amultitwist for j; k 6= 0 if and only if i(a; b) = 2 and j = k = �1 [13][26]. 5. Bn=Z is co-HopfianIn this section we prove Main Theorem 3, namely, that Bn=Z is co-Hop�an. Throughout, we assume n � 4.5.1. Almost half-twist preserving. Let � be an injective endomor-phism of Bn=Z. Our �rst goal is to show that � is almost half-twistpreserving; that is, for each half-twist, some power of it is mapped toa power of a half-twist.The following result of Ivanov and McCarthy will be used:



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 13Theorem 5.1 (Ivanov). Let � < Mod(S) be a �nite index subgroupconsisting of pure elements. If f 2 � has canonical reduction systemC, then Z(C�(f)) �= Zc+pwhere c is the number of curves in C and p is the number of pseudo-Anosov components of fC.This theorem is implicit in lecture notes of Ivanov [17]. For a morerecent exposition, refer to the paper of Ivanov and McCarthy [19].Setup. For the remainder of the section, � : Bn=Z ! Bn=Z is aninjective homomorphism. We also de�ne:�0 = PBn=Z and � = ��1(�0) \ PBn=ZBoth of these subgroups consist entirely of pure elements of Bn=Z byTheorem 3.2. Let k = [Bn=Z : �]!; note then gk 2 � for all g 2 Bn=Z.Proposition 5.2. � is almost half-twist preserving.Proof. Let a be a 2-curve in Dn. Then f = Hka is an element of �, andbelongs to a maximal rank free abelian subgroup of Bn=Z.By Lemma 3.4 and Theorem 5.1, Z(C�0(�(f))) has rank at most 1.According to Theorem 5.1, a canonical reduction system for �(f) hasc circles and p pseudo-Anosov components, where c + p � 1. If p =1, then �(f) is pseudo-Anosov, which contradicts the fact that thecentralizer of f (and hence of �(f)) contains a free abelian group ofrank 2. We can't have c = p = 0, for then �(f) is a �nite order puremapping class, and is hence the identity.Thus, c = 1 and p = 0. So there is nontrivial simple closed curvea0 in Dn such that �(f) = T k0a0 for some k0. We now show that a0 isa 2-curve. Consider a maximal collection of disjoint 2-curves in Dn,fa = a1; : : : ; abn=2cg. The twists fHaig de�ne a basis for a free abeliangroup of rank bn=2c, all of whose generators are conjugate in Bn=Z. As� is an injective homomorphism, f�(Hkai)g is a set of bn=2c twists aboutdisjoint curves surrounding the same number of punctures. Thus, allthe curves are 2-curves.
˜



14 ROBERT W. BELL AND DAN MARGALITAction on curves. By the above proposition and Lemma 4.7, � hasa well-de�ned action �? on 2-curves de�ned by:�(Hka ) = T k0�?(a)5.2. Half-twist preserving. We now prove that any injective endo-morphism of Bn=Z must be half-twist preserving, that is �(Ha) = H�1a0for any half-twist Ha.Proposition 5.3. � is half-twist preserving.Proof. Let a be a 2-curve in Dn, and let �?(a) = a0. By Proposi-tion 5.2, we have �(Hka ) = T k0a0 . Since [Ha; Hka ] = 1 it follows that[�(Ha); �(Hka )] = [�(Ha); T k0a0 ] = 1, and so �(Ha)(a0) = a0 (Fact 3.1).Let S1 and S2 be the surfaces obtained by cutting Dn along the 2-curvea0. If S1 is the twice-punctured disk (the interior of a0), then S2 is anannulus with n� 2 punctures.Since �(Ha) �xes a0, there are well-de�ned reductions f1 and f2 of �(Ha)to S1 and S2. These reductions must be �nite order mapping classessince �(Ha)k = T k0a0 .Since S1 is a twice-punctured disk, f1 must be a power of a half-twist.To show that f2 is the identity, we consider a 2-curve b disjoint from a.We have that �?(b) = b0 is a 2-curve on S2. Further, by commutativity,�(Ha) (and hence f2) �xes b0. If S 02 is the complement of the interiorof b0 in S2, then we see that f2 restricted to S 02 is the identity (applyTheorem 2.1). It follows that f2 is the identity. Thus, we have: �(Ha) =Hma0 .Let b be a 2-curve which is adjacent to a. Since Hb is conjugate to Ha,it follows that �(Hb) = Hmb0 , and then:Hma0Hmb0 Hma0 = Hmb0 Hma0Hmb0By Lemma 4.9, m = �1, and we are done.
˜5.3. Homeomorphism. In this section we complete the last step inthe proof of Main Theorem 3:Proposition 5.4. � is induced by a homeomorphism. In particular, �is an automorphism.



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 15Proof. Let fa1; : : : ; an�1g be a sequence of arcs in Dn with the propertythat ai is adjacent to ai+1 for 1 � i � n � 2 and the arcs are disjointand do not share ends otherwise.By Proposition 5.3 and Lemmas 4.8 and 4.9, the arcs f�?(ai)g have thesame properties. Since Dn � fa1; : : : ; an�1g is a punctured disk, thereare exactly two mapping classes, say h+ (orientation preserving) andh� (orientation reversing), whose actions on the faig agree with thatof �?. Choose h to be h+ if �(Ha1) is a positive half-twist, and h = h�otherwise. Since half twists about the ai generate Bn=Z, it follows that� is induced by h.
˜6. Proof of Main Theorem 2Let � : Bn ! Bn+1 be an injective homomorphism, and assume n � 7throughout this section.6.1. Almost half-twist preserving. The following changes are madeto Section 5.1: �0 is now PBn+1, � = PBn\��1(�0), and k = [Bn : �]!.Theorem 5.1 is changed as follows: all ranks of centers of centralizersincrease by 1 since PBn has in�nite cyclic center (replace c + p withc+ p+ 1).Now, if f 2 � is a power of a Dehn twist, then Z(C�0(�(f)) �= Zc+p+1,where 1 � c + p + 1 � 3 by Lemma 3.4, Theorem 5.1, and the factBn+1 has an in�nite cyclic center. So in the current situation, thereare more possibilities for c and p.For the following lemma, we say that pure mapping classes have over-lapping pseudo-Anosov components if their reductions have pseudo-Anosov components which are distinct and nondisjoint. By work ofIvanov [18], we have:Lemma 6.1. Maps with overlapping pseudo-Anosov components donot commute.We say that multitwists overlap if any of the curves intersect.Lemma 6.2. Overlapping multitwists do not commute.



16 ROBERT W. BELL AND DAN MARGALITThe previous lemma follows from Lemma 3.3, the de�nition of canonicalreduction system, and the fact that the canonical reduction system fora multitwist is the set of curves in the multitwist (the last fact is dueto Birman, Lubotzky, and McCarthy [8]).Proposition 6.3. If f = Hka 2 �, then �(f) is the product of a multi-twist (about at most two curves) and a central element of Bn+1.Proof. As in Section 5.1, we have:1 � c+ p+ 1 � 3where c is the number of components in the canonical reduction systemfor �(f), and p is the number of its pseudo-Anosov components. Thus,we have the following possibilities for (c; p):(0; 2) (0; 1) (0; 0) (1; 1) (2; 0) (1; 0)The �rst possibility is absurd. The second and third possibilities areruled out for the same reasons as before. The goal is to show that onlythe last two possibilities occur, so it remains to rule out the fourth.Assume c = p = 1. Pick a maximal collection of disjoint 2-curves fa =a1; : : : ; abn=2cg. The �(Hkai) are all conjugate, so they each have onecurve a0i in their canonical reduction system, and one pseudo-Anosovcomponent. Since they all commute, the a0i are disjoint by Lemma 3.3.So the a0i must all be 2-curves (using conjugacy). But the pseudo-Anosov pieces cannot be in the interior of the a0i (there are no pseudo-Anosov maps), and they cannot be in the exterior of the a0i, becausethen they all overlap, violating Lemma 6.1.
˜Action on curves. By Proposition 6.3, there is a function:�? : f2-curvesg ! fmulticurvesgBy multicurve, we mean a collection of mutually disjoint nontrivialcurves.We note that since � is an injective homomorphism, Lemma 6.2 im-plies that �? preserves disjointness and non-disjointness of collections ofcurves. We are now ready to show that � is almost half-twist preservingin the sense of Section 5.1.Proposition 6.4. If f = Hka 2 �, then �(f) = Hk0a0HsAzt for some arca0 and curve A, where HsAzt is independent of a.



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 17Proof. If �?(a) is a single curve a0, then �(f) = Hk0a0 zt, for some t. Byconjugacy, A, s, and t are independent of a (s = 0). Now assume�?(a) = fa0; Ag. By conjugacy then, every half-twist then maps to amultitwist about two curves (modulo central elements).First, by combining Theorem 5.1 and Lemma 3.4, we see that if i(a; b) =0 for 2-curves a and b, then �?(a) and �?(b) must share a curve, say�?(b) = fb0; Ag.Now we show that if a, b, and c are mutually disjoint 2-curves, thenthe multicurves �?(a), �?(b), and �?(c) share a common curve (namely,A). Suppose not. Then �?(c) = fa0; b0g. This con�guration contradictsthe fact that there are elements which commute with �(Hka ) and �(Hkb )but not �(Hkc ) (apply Fact 3.1).Now we want to show that if x is any 2-curve, we have �?(x) = fx0; Ag.We will see that this is implied by the connectedness of the followinggraph, which we call the arc triple complex A3(Dn):Vertices. Triples of disjoint 2-curves (thought of as arcs)Edges. Two triples which have two curves in commonAs above, associated to each vertex v of A3(Dn) is a unique curve Av(the one common to the images under �? of the three arcs). If v isconnected to w by an edge, we see that Aw = Av. Since A3(Dn) isconnected for n � 7 (see Section 8), there is a unique curve A so thatA 2 �?(x) for all x.As in Section 5.1, a0 must be a 2-curve: any maximal collection fa =a1; : : : ; abn=2cg of disjoint 2-curves must go to a set of bn=2c 2-curves(plus possibly A), since the corresponding abelian subgroup with con-jugate generators is preserved.
˜6.2. Half-twist preserving. We now show that � is half-twist pre-serving in the sense of Section 5.2.Proposition 6.5. If Ha 2 Bn is a half-twist, then �(Ha) = H�1a0 faHsAztfor a 2-curve a0 2 �?(a), where HsAzt is independent of a, and fa issupported on the component of Dn+1 � A which does not contain a0.



18 ROBERT W. BELL AND DAN MARGALITProof. Let Ha be a half-twist. If �?(a) is a single curve (in this cases = 0), then the argument in Section 5.2 applies. Thus, we assume�?(a) = fa0; Ag, where a0 and A are as in Proposition 6.4.As in Section 5.2, we see that �(Ha) �xes fa0; Ag by commutativity(Fact 3.1). If b is any 2-curve in Dn disjoint from a, we have �?(b) =fb0; Ag, and it follows from the commutativity of Ha and Hb that �(Ha)also �xes fb0; Ag, and hence �xes a0 and A individually.Thus, we can consider the reductions of �(Ha) to the surfaces obtainedby cutting Dn+1 along a0 and A. Let S1 be the interior of a0, let S2be the component containing b0, and let S3 be the last component. Byconjugacy of Ha and Hb, we have that a0 is a boundary component ofS2. Again, these reductions are �nite order mapping classes.As before, the mapping class f1 of S1 must be a power of a half-twist.By commutativity, the mapping class f2 of S2 �xes b0. Since it also�xes a0 and A, then as in Section 5.2 it is the identity.Hence �(Ha) = Hma0 faHsAzt, where fa is some mapping class supportedon S3.For an arc b adjacent to the arc a, we have that Ha and Hb satisfy thebraid relation, and �(Hb) = Hmb0 fbHsAzt. By considering the reductionsof �(Ha) and �(Hb) to the surface S1 [ S2, we have:Hma0Hmb0 Hma0 = Hmb0 Hma0Hmb0as elements of Mod(S1 [ S2). Lemma 4.9 implies that m = �1.
˜6.3. Embedding. The following is the last step of the proof of MainTheorem 2:Proposition 6.6. � is induced by an embedding h : Dn ! Dn+1.Proof. Consider a chain of arcs fa1; : : : ; an�1g connecting successivepunctures in Dn. By Proposition 6.5 and Lemmas 4.8 and 4.9, wehave that the fa0ig (where �?(ai) = fa0ig or fa0i; Ag) is a similar chainof arcs connecting n of the punctures in Dn+1. Choose an embeddingh : Dn ! Dn+1 taking the �rst chain to the second chain, and taking@Dn to the boundary of a regular neighborhood of the second chain(as in Section 5.3, there are two choices). First note that if A 2 �?(ai),



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 19then A = h(@Dn), for otherwise it would intersect one of the a0i or beisotopic to @Dn+1 (it follows that each fai is trivial).We see that h induces � since �(Ha) = H�(h)h(a)T sAzt and the fHaig gen-erate Bn. Note that HsA must actually be a power of a full Dehn twistsince it commutes with the images of the generators.
˜Special cases. Using ideas of Chris Leininger, we have completeproofs of Main Theorem 2 for n 2 f4; 5; 6g. For n = 5 and n = 6,we use the connectedness of A2(Dn); the key is to consider elementsof Bn which \realize" the edges of the complex. The case of n = 4requires more work, since A2(D4) is not connected (it has in�nitelymany components).7. Mapping class groups of spheresWe now explain why the proofs of the main theorems also apply to thecase of mapping class groups of spheres (as per Theorem 1.2).Let S be a sphere with n � 5 punctures. We �rst note that Bn�1=Zis a �nite index subgroup of Mod(S) (the subgroup �xing one of thepunctures). Let S 0 be either S or a sphere with n + 1 punctures.To see that any injective homomorphism � : Mod(S) ! Mod(S 0)is almost half-twist preserving, we study �nite index subgroups � <Mod(S) and �0 < Mod(S 0), which are the same groups as in the braidcase.If S = S 0, the proofs that � is half-twist preserving and that � inducedby a homeomorphism are the same as for the braid case.For S 6= S 0, we use the obvious spherical version of the arc k-tuplecomplex, and, as in the braid case, we �nd that �(Ha) = Hma0HsA forany half-twistHa, where a0 is a 2-curve and HsA is independent of a. If bis adjacent to a, then an application of Lemma 4.9 yields that m = �1,and if �(Hb) = Hmb0 HsA, that a0 is adjacent to b0. Also, any chain faigof n�1 arcs in S gets mapped to a chain fa0ig of n�1 arcs in S 0. SinceA is disjoint from this chain in S 0, it follows that A is trivial, that is,�(Ha) = H�1a0 .



20 ROBERT W. BELL AND DAN MARGALITThe element (Ha1 � � �Han�2)n�1 is trivial in Mod(S). But this getsmapped to (Ha01 � � �Ha0n�2)n�1, which is a nontrivial twist. This is acontradiction, so there are no injective homomorphisms Mod(S) !Mod(S 0). 8. Arc k-tuple complexWe de�ne the following complex Ak(Dn) for k � 2 and n � 2k:Vertices. k-tuples of disjoint arcs in Dn (all 2k ends distinct)Edges. Pairs of k-tuples sharing a (k � 1)-tupleIn Section 6, we use the fact that the arc triple complex (k = 3) isconnected for n � 7. It is not hard to see that Ak(Dn) is not connectedfor n = 2k.We think of Dn as a disk in R2 with n points removed along a line.This allows us to speak of the closest puncture(s) to a given puncture.A straight arc is a linear arc (whose ends are necessarily neighboringpunctures).
b

a

a'

p b pq b'Figure 5. Left: a basic move; right: shu�ing.Basic moves. We will make frequent use of the following move whichreduces the intersection between a vertex A and an arc b. Refer to theleft diagram in Figure 5. Suppose p is an end of b, but not the endof any arc of A, and that a is the arc of A closest to p along b. Thereplacement of a by a0, obtained by pushing a o� b, is an edge from Ato A0 = (A� fag) [ fa0g in Ak(Dn). We call this a basic move along bat p.Theorem 8.1. Ak(Dn) is connected for n > 2k.Proof. Choose a base vertex V of Ak(Dn), all of whose arcs are straight,and let A be any other vertex. Assuming A has at least one non-straight



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 21arc, we will show there is a path from A to a vertex which has one morestraight arc than A. By induction, this implies that A is connected toa vertex consisting only of straight arcs, and it is clear that any sucharc is connected to V .Because n > 2k, we can choose a puncture p which is not an end ofany arc in A and which is closest to the set of ends of the non-straightarcs of A; let q be one of these ends closest to p. Potentially, there arestraight arcs of A between p and q. We shu�e these straight arcs asfollows (refer to the right side of Figure 5):Suppose that b 2 A is the straight arc closest to p. Let b0 be thestraight arc joining p and the end of b which is closest to p. Performbasic moves along b0 at p until the new arcs do not intersect b0. Nowreplace b with b0. The end of b furthest from p is not the end of any arcin the new vertex and is closer to q than p. Repeating this process ifnecessary, we can assume that p neighbors the end q of a non-straightarc, say a, of A.Let c be the straight arc joining p and q. Perform basic moves along cat p until the new arcs do not intersect c. Replacing a with c completesthe inductive step.
˜9. QuestionsThe results of this paper suggest a variety of directions for furtherstudy. Some answers have been obtained after the circulation of the�rst version of this paper (see footnotes).Question 1. Is every injective homomorphism of Bn into Bm geomet-ric?In general, injective homomorphisms are more complicated than inour main theorems. For example, consider the following two injectivehomomorphisms of Bn into B2n:� cabling: half twists are sent to elements switching pairs ofpunctures (see Figure 6)� doubling: half twists are sent to products of two half-twists(one in each \half" of D2n)
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h(a)

hi(Dn)

Figure 6. Generalized half-twist, k = 2.We now give a de�nition of geometric injection:Let fhig be a �nite collection of embeddings Dn ! Dm with:� hi(Dn) are mutually disjoint (possibly nested)� for a given i, any circle with a single puncture in its interioris sent by hi to a circle with k punctures in its interior, wherek does not depend on the circleThen, a strictly geometric injection is one de�ned as follows on gener-ators: �(Ha) = Hh(a)Here, a is any 2-curve and Hh(a) =QHhi(a). Note that in general hi(a)is not a 2-curve, but a 2k-curve (k as above). In this case, Hhi(a) is ageneralized half-twist, as in Figure 6.Note that both of the above examples of injective homomorphisms(cabling and doubling) are strictly geometric in this sense.Actually, a strictly geometric injection can be augmented to an injec-tive homomorphism (still deserving of the name geometric) by addingappropriately de�ned \constant terms", as in our main theorems. Anexample of a constant term is a product of twists about disjoint curveswhich are themselves disjoint from the hi(Dn).Braiding braids. Nested embeddings of disks give rise to evenmore interesting strictly geometric injections. For instance, an injectivehomomorphism of Bn into Bn2 is given by including n copies of Bn intoBn2, and also braiding the n copies.For an appropriate de�nition of geometric injection, we have:Question 2 (Farb{Margalit). Is every injection of mapping class groupsgeometric?



BRAID GROUPS AND THE CO-HOPFIAN PROPERTY 23The co-Hop�an property has not been established for certain relatedgroups:Question 3. Which Artin groups modulo their centers co-Hop�an?1Question 4. Are surface braid groups co-Hop�an?Irmak, Ivanov, and McCarthy have recently shown that the automor-phism group of a higher-genus surface braid group is the extendedmapping class group of the corresponding punctured surface [15].Superinjective maps of curve complexes were introduced by Irmak inorder to study injective homomorphisms of �nite-index subgroups ofmapping class groups (for higher genus surfaces) [14].Question 5. Is every superinjective map of the complex of curves ofa punctured sphere or punctured torus induced by a homeomorphism ofthe surface?2An a�rmative answer to Question 5 would extend the results of thispaper to �nite index subgroups, in particular pure braid groups. Alongthe same lines, we have:Question 6. What is the abstract commensurator of Bn?3References[1] Jason Behrstock and Dan Margalit. Curve complexes and �nite index sub-groups of mapping class groups.[2] Robert W. Bell and Dan Margalit. Injections of Artin groups.[3] Stephen J. Bigelow. Braid groups are linear. J. Amer. Math. Soc., 14(2):471{486, 2001.[4] Joan S. Birman. Braids, links, and mapping class groups. Princeton UniversityPress, Princeton, N.J., 1974. Annals of Mathematics Studies, No. 82.[5] Joan S. Birman and Hugh M. Hilden. On the mapping class groups of closedsurfaces as covering spaces. In Advances in the theory of Riemann surfaces(Proc. Conf., Stony Brook, N.Y., 1969), pages 81{115. Ann. of Math. Studies,No. 66. Princeton Univ. Press, Princeton, N.J., 1971.[6] Joan S. Birman and Hugh M. Hilden. Lifting and projecting homeomorphisms.Arch. Math. (Basel), 23:428{434, 1972.[7] Joan S. Birman and Hugh M. Hilden. On isotopies of homeomorphisms ofRiemann surfaces. Ann. of Math. (2), 97:424{439, 1973.1For partial results, see [2].2This is completely answered in [1] [2] [27].3Complete answer given in [24].
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