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Abstract

Let Bn be the braid group on n � 4 strands. We show that the abstract commensurator of Bn is
isomorphic to Mod(S) � (Q× � Q∞), where Mod(S) is the extended mapping class group of the
sphere with n + 1 punctures.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Artin’s braid group on n strands, denoted Bn, is the group defined by the following
presentation:

〈
σ1, . . . , σn−1: σiσi+1σi = σi+1σiσi+1 for all i,

σiσj = σjσi for |i − j | > 1
〉
.
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This group also has a topological interpretation, from which it gets its name (see,
e.g., [3]). We denote the center of Bn by Z; it is infinite cyclic, generated by z =
(σ1 · · ·σn−1)

n. The goal of this paper is to characterize all isomorphisms between finite
index subgroups of Bn.

The abstract commensurator Comm(G) of a group G is the group of equivalence
classes of isomorphisms of finite index subgroups of G:

Comm(G) = {
Φ :Γ

∼=→ Δ: Γ, Δ finite index subgroups of G
}
/∼

where Φ ∼ Φ ′ if there is a finite index subgroup Γ ′ of G such that Φ|Γ ′ = Φ ′|Γ ′ . The
product of elements of Comm(G) represented by Φ1 :Γ1 → Δ1 and Φ2 :Γ2 → Δ2 is
an element represented by the isomorphism Φ2 ◦ Φ1|Φ−1

1 (Δ1∩Γ2)
. A simple example is

Comm(Zn) ∼= GLn(Q).
The extended mapping class group Mod(S) of a surface S is the group of isotopy classes

of homeomorphisms of S:

Mod(S) = π0
(
Homeo±(S)

)
.

Main Theorem. Suppose n � 4, and let S be the sphere with n + 1 punctures. Then we
have:

Comm(Bn) ∼= Mod(S) �
(
Q× � Q∞)

.

We say that two groups G and G′ are abstractly commensurable if they have isomor-
phic finite index subgroups. In this case, it follows from the definition that Comm(G) ∼=
Comm(G′). A special case of this is when G′ is itself a finite index subgroup of G.

Thus, the main theorem also gives the abstract commensurator of all finite index sub-
groups of Bn. We now mention two such subgroups of general interest. The pure braid
group on n strands PBn is the kernel of the natural map from Bn to the symmetric group
on {1, . . . , n} which sends σi to the transposition switching i and i + 1. The Artin group
A(Bn−1) is isomorphic to the finite index subgroup of Bn generated by σ 2

1 , σ2, . . . , σn−1.

Corollary 1. Suppose n � 4, and let S be the sphere with n + 1 punctures. Then we have:

Comm(PBn) ∼= Comm
(
A(Bn−1)

) ∼= Mod(S) �
(
Q× � Q∞)

.

The factor of Mod(S) in the main theorem comes from the following theorem of Char-
ney and Crisp, which is a corollary of a theorem of Korkmaz [5,13].

Theorem 1.1. Suppose n � 4, and let S the sphere with n + 1 punctures. Then we have:

Comm(Bn/Z) ∼= Mod(S).

This theorem relies on the classical fact that Bn/Z is isomorphic to the finite index sub-
group of Mod(S) consisting of orientation preserving elements that fix a single given punc-
ture (see, e.g., [5]). Thus, there is a natural homomorphism Mod(S) → Comm(Bn/Z) ∼=
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Comm(Mod(S)), as Mod(S) acts on itself by inner automorphisms. Korkmaz’s theorem is
that this map is surjective, and Charney and Crisp’s contribution is that the map is injective
(this is implicit in the work of Ivanov [12]).

Other braid groups. Our proof does not hold for n = 3, as there is no analog of The-
orem 1.1. Indeed, PB3/Z is isomorphic to the free group F2, and Comm(F2) contains
Aut(Fn) for all n > 0. Also, note B2 ∼= Z and B1 = 1.

Historical background. We think of Comm(Bn) as describing “hidden automorphisms”
of Bn (compare Neumann and Reid [14] and Farb and Weinberger [10]). In that sense, our
main result is a generalization of the theorem of Dyer and Grossman that Out(Bn) ∼= Z/2Z

[7]. Recently, Charney and Crisp proved that Out(A(Bn−1)) ∼= (Z � Z/2Z) × Z/2Z [5],
and Bell and Margalit proved that Out(PBn) ∼= ZN � (Σn × Z/2Z), where N = (

n
2

) − 1
and Σn is the symmetric group on n letters [1]. Charney and Crisp also showed that the
abstract commensurator of any finite type Artin group (e.g., Bn) contains an infinitely gen-
erated abelian subgroup. Very recently, Crisp has determined the abstract commensurators
of certain 2-dimensional Artin groups [6].

As explained, there is a close connection between braid groups and mapping class
groups. Ivanov proved that Comm(Mod(S)) is isomorphic to Mod(S) for most surfaces S

[12]; the genus zero case is Theorem 1.1. Building on Ivanov’s ideas, Mod(S) was also
shown to be the abstract commensurator of two other important subgroups of Mod(S): the
Torelli subgroup by Farb and Ivanov [9], and the so-called Johnson kernel by Brendle and
Margalit [4]. A similar phenomenon exists with the related group Out(Fn); it is a result of
Farb and Handel that Comm(Out(Fn)) is isomorphic to Out(Fn) when n � 4 [8].

The notion of an abstract commensurator can also be viewed as a generalization of
the commensurator of a subgroup H < G; this is the subgroup of G consisting of those
elements g for which H ∩ gHg−1 has finite index in both H and gHg−1. Godelle, Paris,
and Rolfsen have studied commensurators of subgroups of Artin groups [11,15,16].

Remark. Some of the ingredients in our proof can be viewed as generalizations of facts
about automorphism groups (see Section 3), and are likely well known to others familiar
with commensurators, though we have found no references for them.

Outline of proof. First we find a group G which is abstractly commensurable to Bn, and
which is a direct product over its center, Z.

Proposition 1. G = Ĝ × Z.

We then define the transvection subgroup Tv(G) of Comm(G) and show this group splits
off as a semidirect factor.

Proposition 2. Comm(G) ∼= Mod(S) � Tv(G).

To understand the structure of Tv(G), we define the subgroup H of simple transvections
and show this groups splits from Tv(G) as a semidirect factor.
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Proposition 3. Tv(G) ∼= Q× �H.

Finally, we use the notion of a divisible group to describe H.

Proposition 4. H ∼= Q∞.

2. The proof

Let n � 4 be fixed. We start by finding a group G which is abstractly commensurable
to Bn, and which splits over its center. A priori, this is an easier group to work with than Bn,
and as mentioned earlier, it has an isomorphic abstract commensurator.

Length homomorphism. We will make use of the length homomorphism L :Bn → Z,
which is defined by σi → 1 for all i. Note that L is indeed a homomorphism, and that
L(z) = n(n − 1).

Proposition 1. Bn is abstractly commensurable to the external direct product

G = Ĝ × Z

where Ĝ is a finite index subgroup of Bn/Z.

Proof. Let K be the kernel of the composition

Bn
L→ Z → Z/n(n − 1)Z

where the latter map is reduction modulo n(n − 1).
Since Z < K, we have:

1 → Z →K → K/Z → 1. (1)

We can view the restriction of L to K as a projection to Z by defining a map K → Z

via g 	→ zL(g)/n(n−1); this is a splitting for the sequence since L(z) = n(n − 1). Thus,
K is isomorphic to the external direct product which we denote G = Ĝ × Z ∼= K where
Ĝ = K/Z. �

As an abuse of notation, we will identify Ĝ and Z with their images in G.

Virtual center of G. We will use the fact that the structure of G with respect to its center
is preserved under passage to finite index subgroups:

Lemma 2.1. If Γ is any finite index subgroup of G, then Z(Γ ) = Γ ∩ Z.

Via the isomorphism of Proposition 1, this lemma is part of the proof of Theorem 1.1;
it is equivalent to the statement that the map from Mod(S) to Comm(Mod(S)) is injective.
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Transvections. We define the transvection subgroup Tv(G) of Comm(G) by the follow-
ing short exact sequence (compare with [5]):

1 → Tv(G) → Comm(G) → Comm(Ĝ) → 1. (2)

That Comm(G) surjects onto Comm(Ĝ) follows directly from the fact that G = Ĝ × Z.

Proposition 2. Comm(G) ∼= Mod(S) � Tv(G).

Proof. Since Ĝ is a finite index subgroup of Bn/Z, Theorem 1.1 gives Comm(Ĝ) ∼=
Mod(S). We define a splitting for (2) by sending an element of Comm(Ĝ) represented
by Ψ : Γ̂ → Δ̂ to the element of Comm(G) represented by Ψ × 1 : Γ̂ × Z → Δ̂ × Z. �
Simple transvections. There is a homomorphism θ from Tv(G) to Q× which measures
the action on Z. Indeed, given an element of Tv(G) represented by Φ :Γ → Δ, and any
zq ∈ Γ , we must have Φ(zq) = zp for some nonzero p (by Lemma 2.1); define θ([Φ]) to
be p/q . This is a well-defined homomorphism; we call its kernel the group H of simple
transvections:

1 → H → Tv(G)
θ→ Q× → 1. (3)

Proposition 3. Tv(G) ∼= Q× �H .

Proof. There is a splitting of (3): given p/q ∈ Q×, where p,q ∈ Z, let Φ : Ĝ × 〈zq〉 →
Ĝ×〈zp〉 be the transvection which is the identity on the first factor, and sends zq to zp . �
Subgroup structure. Given finite index subgroups Γ̂ < Ĝ and Z0 < Z, by an abuse of
notation, we identify the external direct product Γ̂ × Z0 with its image under the obvious
inclusion Γ̂ × Z0 < Ĝ × Z. The next lemma says that we can always choose subgroups of
this type as domains for representatives of commensurators.

Lemma 2.2. If Γ is a finite index subgroup of G, then Γ has a finite index subgroup Γ ′ of
the form:

Γ ′ = Γ̂ ′ × Z(Γ )

where Γ̂ ′ is a finite index subgroup of Ĝ.

Proof. By Lemma 2.1, Z(Γ ) < Z. Let Γ ′ be the kernel of the composition

Γ ↪→ G → Z → Z/Z(Γ )

where the latter two maps are the obvious projections. Denote the composition of the first
two maps by π . Then the short exact sequence

1 → Z(Γ ) → Γ ′ → Γ ′/Z(Γ ) → 1
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has a splitting Γ ′ → Z(Γ ) given by g 	→ π(g) with kernel Γ̂ ′ < Ĝ, and the lemma fol-
lows. �
Transvections and cohomology. In order to get a clearer picture of H, we need a
description of elements of Tv(G). Recall that for a group G, we have H1(G,Z) ∼=
Hom(G,Z).

Lemma 2.3. Suppose Φ :Γ → Δ represents an element of Tv(G). Then there exists φ ∈
H1(Γ,Z) so that Φ is given by:

Φ(g) = gzφ(g).

If [Φ] ∈H and Γ ∼= Γ̂ × Z(Γ ), we may view φ as an element of H1(Γ̂ ,Z).

By Lemma 2.2, the second statement applies to all elements of H.

Proof. We define an element φ ∈ H1(Γ,Z) by the equation

zφ(g) = g−1Φ(g).

That φ is a homomorphism follows from the assumption that Φ is a transvection (in par-
ticular, g−1Φ(g) is central):

zφ(gh) = h−1g−1Φ(g)Φ(h) = g−1Φ(g)h−1Φ(h) = zφ(g)+φ(h).

The first statement follows. The second statement is clear: if [Φ] ∈ H, then Φ(g) = g for
all g ∈ Z(Γ ); thus φ|Z(Γ ) = 0, and φ descends to Γ̂ ∼= Γ/Z(Γ ). �
Direct limits. Let I be a directed partially ordered set; that is, I is a partially ordered
set with the property that for any i, j ∈ I , there is a k ∈ I with i, j � k. A collection
of abelian groups {Gi}i∈I and homomorphisms {fij :Gi → Gj }{i,j∈I |i�j} forms a direct
system if: (1) the homomorphism fii is the identity map for all i; and (2) given any two
homomorphisms fij and fjk , we have fik = fjk ◦ fij .

The direct limit of the direct system (Gi, fij ), which we denote limGi , is the group
which satisfies the following universal property: if ιi :Gi → G is a collection of homo-
morphisms respecting the homomorphisms fij , then there is a unique homomorphism
ι : limGi → G through which each ιi factors. It follows that if each ιi is a monomorphism,
then so is ι. In this case, each Gi naturally includes into limGi .

Direct limit of cohomology groups. We will consider the direct system of groups
H1(Γ̂i ,Z), where Γ̂i ranges over all finite index subgroups of Ĝ. Since Z is torsion free,
the natural homomorphism H1(Γ̂1,Z) → H1(Γ̂2,Z), for any Γ̂2 < Γ̂1, is injective; the in-
clusion is given by restriction of homomorphisms. That (the index set of) {Γ̂i} forms a
directed partially ordered set is the fact that any two finite index subgroups have a common
finite index subgroup (namely, their intersection). Properties (1) and (2) of direct systems
are apparent. Thus, lim H1(Γ̂i ,Z) is defined.
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Lemma 2.4. H ∼= lim H1(Γ̂i ,Z).

Proof. If Γ̂i is any finite index subgroup of Ĝ, then there is a monomorphism

Ξ
Γ̂i

: H1(Γ̂i ,Z) →H

given by

φ 	→ [
Φ : Γ̂i × Z

∼=→ Γ ′]

where Φ(g) = gzφ(g).
Moreover, this map respects the inclusions of the aforementioned direct system: if

Γ̂2 < Γ̂1 then H1(Γ̂1,Z) < H1(Γ̂2,Z) by restriction. Thus Ξ
Γ̂1

is the restriction of Ξ
Γ̂2

,
and so the universal property guarantees a well-defined injection

Ξ : lim H1(Γ̂i ,Z) ↪→H.

The inverse of Ξ is provided by Lemma 2.3, so Ξ is an isomorphism. �
Divisible groups. An abelian group G is divisible if for any element g of G, and any
positive integer q , there is an element h of G with hq = g. The next fact follows from
definitions:

Fact 1. Any torsion free divisible group is a vector space over Q.

Braid groups and free groups. Given the inclusion of Bn/Z into Mod(S) described in
Section 1, it follows from the definition of PBn that PBn/Z is isomorphic to the subgroup
of Mod(S) consisting of orientation preserving mapping classes that fix each puncture
(note Z(PBn) = Z). Thus, for any m < n, there is a surjection PBn/Z → PBm/Z(PBm)

obtained by “forgetting” n−m of the punctures. In this way, PBn/Z maps surjectively onto
PB3/Z(PB3), which is isomorphic to the free group on two letters F2 (the last statement
follows, for example, from the Birman exact sequence [2, Theorem 1.4]). We record this
fact for future reference:

Fact 2. If n � 3, then PBn/Z surjects onto F2.

The following proposition completes the proof of the main theorem.

Proposition 4. H ∼= Q∞.

Proof. By Lemma 2.4, we need only prove lim H1(Γ̂i ,Z) ∼= Q∞. By Fact 1, and since
lim H1(Γ̂i ,Z) is countable, it suffices to show that lim H1(Γ̂i ,Z) is a torsion free divisible
group which contains free abelian subgroups of arbitrary rank.

First, lim H1(Γ̂i ,Z) is torsion free and abelian since each H1(Γ̂i ,Z) has these properties.
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To see that lim H1(Γ̂i ,Z) is a divisible group, let φ ∈ H1(Γ̂ ,Z) ⊂ lim H1(Γ̂i ,Z), and let
q ∈ Z. Consider the subgroup Γ̂q of Γ̂ that is the kernel of the composition:

Γ̂
φ→ Z → Z/qZ.

Then φ|
Γ̂q

maps to qZ. Thus, φ = qφ′ for some φ′ ∈ H1(Γ̂q ,Z).
We now construct free abelian subgroups of arbitrarily large rank in lim H1(Γ̂i ,Z). Let

Π : PBn/Z → F2 be the surjection given by Fact 2. We can choose finite index free sub-
groups Fk < F2 with any rank k � 2. Thus, since surjections and passages to finite index
subgroups both induce inclusions on cohomology, we have the required injections:

Zk ∼= H1(Fk,Z) ↪→ H1(Π−1(Fk) ∩ Ĝ,Z
)
↪→ lim H1(Γ̂i ,Z). �

3. Generalities

As we have mentioned, given a group Γ , we view Comm(Γ ) as a generalization of
Aut(Γ ). Automorphism groups of central extensions of centerless groups can be under-
stood as follows. First, let G be a group with Z(G) = 1, A an abelian group, and

1 → A → Γ → G → 1 (4)

a split central extension. This induces a split exact sequence

1 → tv(Γ ) → Aut(Γ ) → Aut(G) → 1. (5)

The subgroup tv(Γ ) of Aut(Γ ) consists of those automorphisms which become trivial
upon passing to the quotient G. This group fits into a split exact sequence

1 → H1(G,A) → tv(Γ ) → Aut(A) → 1. (6)

The inclusion of H1(G,A) into tv(Γ ) is defined by sending any φ in H1(G,A) to the map
given by g 	→ gφ̃(g), where φ̃ is the pullback of φ to H1(Γ,A) (compare Lemma 2.3).

If (4) is not split, then we still have sequences (5) and (6), but these need not be exact
(although the second map in each is still injective).

When all finite index subgroups of G are centerless, we obtain a completely analogous
picture for Comm(G). In particular, (5) becomes

1 → Tv(Γ ) → Comm(Γ ) → Comm(G) → 1. (5′)

The group Tv(Γ ) consists of those commensurators which are trivial in Comm(G). This
also determines a sequence analogous to (6):

1 → lim H1(Gi,A) → Tv(Γ ) → Comm(A) → 1, (6′)
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where Gi ranges over the finite index subgroups of G. When (4) virtually splits, these are
also split exact. Otherwise, they need not be exact.

Finally, we have lim H1(Gi,A) ∼= lim H1(Gi,A/T ), where T is the torsion subgroup
of A. If A is finitely generated and A/T ∼= Zm, then

lim H1(Gi,A) ∼= Qm·vb1 and Comm(A) ∼= GLm(Q)

where vb1 ∈ Z�0 ∪ {∞} is the virtual first Betti number of G, i.e., the supremum of the
first Betti numbers of finite index subgroups of G. So in this case, we have:

Comm(Γ ) ∼= Comm(G) �
(
GLm(Q) � Qm·vb1

)
.
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