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ABSTRACT. We give an algorithm for determining the distance between two

vertices of the complex of curves. While there already exist such algorithms, for

example by Leasure, Shackleton, and Webb, our approach is new, simple, and

more effective for all distances accessible by computer. Our method gives a new

preferred finite set of geodesics between any two vertices of the complex, called

efficient geodesics, which are different from the tight geodesics introduced by

Masur and Minsky.

FIGURE 1. Vertices of C (S2) with distance 4 and intersection number

12; this is the smallest possible intersection for vertices with distance 4

1. INTRODUCTION

The complex of curves C (S) for a compact surface S is the simplicial flag com-

plex whose vertices correspond to isotopy classes of essential simple closed curves

in S and whose edges connect vertices with disjoint representatives. We can endow

the 0-skeleton of C (S) with a metric by defining the distance between two vertices

to be the minimal number of edges in any edge path between the two vertices.

The geometry of C (S)—especially the large-scale geometry—has been a topic

of intense study over the past two decades, as there are deep applications to the

theories of 3-manifolds, mapping class groups, and Teichmüller space; see, e.g.,

[14]. The seminal result, due to Masur and Minsky in 1996, states that C (S) is δ -

hyperbolic [13]. Recently, several simple proofs of this fact have been found, and

it has been shown that δ can be chosen independently of S; see [2, 6, 7, 10, 15].

In 2002, Leasure [11, §3.2] found an algorithm to compute the distance between

two vertices of C (S), and since then other algorithms have been devised by Shack-

leton [17], Webb [19], and Watanabe [18]. About his algorithm, Leasure says:

We do not mention this in the belief that anyone will ever imple-

ment it. The novelty is that finding the exact distance between two

curves in the curve complex should be so awkward.
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One goal of this paper is to give an algorithm for distance—the efficient geodesic

algorithm—that actually can be implemented, at least for small distances. The

third author and Glenn, Morrell, and Morse [8] have in fact already developed an

implementation of our algorithm, called Metric in the Curve Complex [9]. Their

program is assembling a data bank of examples as we write.

Known examples. Let Sg denote a closed, connected, orientable surface of genus

g and let imin(g,d) denote the minimal intersection number for vertices of C (Sg)
with distance d. The Metric in the Curve Complex program has been used to show

that:

(1) imin(2,4) = 12 and

(2) imin(3,4) ≤ 21.

The highly symmetric example in Figure 1—which realizes imin(2,4)—was dis-

covered using the program. See Section 2 for a discussion of this example and a

proof using the methods of this paper that the distance is actually 4.

We are only aware of one other explicit picture in the literature of a pair of

vertices of C (S2) that have distance four, namely, the example of Hempel that

appears in the notes of Saul Schleimer [16, Figure 2] (see [8, Example 1.5] for a

proof that the distance is 4). This example has geometric intersection number 25.

Using the bounded geodesic image theorem [12, Theorem 3.1] of Masur and

Minsky (as quantified by Webb [21]) it is possible to explicitly construct examples

of vertices with any given distance; see [17, Section 6]. We do not know how to

keep the intersection numbers close to the minimum with this method, but Aougab

and Taylor did in fact use this method to give examples of vertices of arbitrary

distance whose intersection numbers are close to the minimum in an asymptotic

sense; see their paper [3] for the precise statement.

Local infinitude. One reason why computations with the complex of curves are

so difficult is that it is locally infinite and moreover there are sometimes infinitely

many geodesics (i.e. shortest paths) connecting a given pair of vertices. Masur

and Minsky [12] addressed this issue by finding a preferred set of geodesics, called

tight geodesics, and proving that between any two vertices there are finitely many

tight geodesics; see Section 2.2 for the definition. Our first goal is to give a new

class of geodesics that still has finitely many elements connecting any two vertices

but is more amenable to certain computations.

Efficient geodesics. Our approach to understanding geodesics in C (S) is in terms

of intersections with arcs. First, suppose that γ is an arc in S and α is a simple

closed curve in S. We say that γ and α are in minimal position if α is disjoint from

the endpoints of γ and the number of points of intersection of α with γ is smallest

over all simple closed curves that are homotopic to α through homotopies that do

not pass through the endpoints of γ .

Let v0, . . . ,vn be a geodesic of length at least three in C (S), and let α0, α1, and

αn be representatives of v0, v1, and vn that are pairwise in minimal position (this

configuration is unique up to isotopy of S). A reference arc for the triple α0,α1,αn
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is an arc γ that is in minimal position with α1 and whose interior is disjoint from

α0 ∪αn; such arcs were considered by Leasure [11, Definition 3.2.1].

We say that the oriented geodesic v0, . . . ,vn is initially efficient if

|α1 ∩ γ | ≤ n−1

for all choices of reference arcs γ (this is independent of the choices of α0, α1, and

αn by the uniqueness statement above). Finally, we say that v = v0, . . . ,vn = w is

efficient if the oriented geodesic vk, . . . ,vn is initially efficient for each 0≤ k ≤ n−3

and the oriented geodesic vn,vn−1,vn−2,vn−3 is also initially efficient.

We emphasize that to test the initial efficiency of vk, . . . ,vn we should look at

reference arcs for the triple vk, vk+1, and vn and we allow n− k−1 points of inter-

section of (a representative of) vk+1 with any such reference arc.

Existence of efficient geodesics. Our main result is that efficient geodesics always

exist, and that there are finitely many between any two vertices.

Theorem 1.1. Let g ≥ 2. If v and w are vertices of C (Sg) with d(v,w) ≥ 3, then

there exists an efficient geodesic from v to w. What is more, there is an explicitly

computable list of at most

n6g−6

vertices v1 that can appear as the first vertex on an initially efficient geodesic

v = v0,v1, . . . ,vn = w.

In particular, there are finitely many efficient geodesics from v to w.

We emphasize that our theorem is only for closed surfaces; see the discussion

on page 18 about surfaces with boundary for an explanation. We also mention that

this theorem is stronger than Theorem 1.1 in the first version of this paper [4]; see

Proposition 3.7 and the accompanying discussion.

Finitely many reference arcs. While a priori there are infinitely many reference

arcs that need to be checked in the definition of initial efficiency there are in fact

finitely many. Indeed, let α0, α1, and αn be representatives of v, v1, and w that have

minimal intersection pairwise. Since d(v,w) ≥ 3 it follows that α0 and αn fill S,

which means that they together decompose S into a collection of polygons. We can

endow each such polygon with a Euclidean metric and replace each segment of α1

in each polygon with a straight line segment.

There are finitely many non-rectangular polygons in the decomposition since

each 2k-gon contributes −(k − 2)/2 to χ(S). And each reference arc in a rect-

angular region is parallel to one in a non-rectangular region. Thus in order to

check initial efficiency, it is enough to consider reference arcs that lie in a non-

rectangular polygonal region. Furthermore, it is enough to consider reference arcs

that are straight line segments connecting the midpoints of the α0-edges of a poly-

gon. Indeed, such an arc is necessarily in minimal position with α1 and any other

reference arc can be extended to such a reference arc.

In the special case that the reference arc connects the midpoints of α0-edges

that are consecutive in a polygon, the reference arc is parallel to the αn-edge in
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between. In this case points of α1 ∩ γ are in bijection with points of α1 ∩ αn,

and so the definition of initial efficiency can be translated into a statement about

intersections of α1 with αn; see Proposition 3.7 below.

Finitude of efficient geodesics. The main point of Theorem 1.1 is the existence

statement; the finiteness statement can be dispensed with immediately. Indeed, for

any geodesic v0, . . . ,vn let α0, α1, and αn be representatives of v0, v1, and vn that

have minimal intersection pairwise. As above, α0 and αn decompose Sg into a

collection of polygons.

If we cut Sg along α0 we obtain a surface S′g with two boundary components

on which αn becomes a collection of arcs. The αn-arcs cut S′g into a collection of

even-sided polygons. We can choose reference arcs in S′g that are disjoint from each

other, that have interiors disjoint from the αn-arcs, and that cut S′g into hexagons.

Such a collection is obtained by taking one reference arc parallel to each parallel

family of arcs of αn and then taking additional reference arcs cutting across any

remaining polygons with more than six sides.

An Euler characteristic count shows that any such collection of reference arcs

has 6g−6 elements. Also, since α1 is disjoint from α0 the curve α1 is determined

up to homotopy by the number of intersections it has with each reference arc. By

the definition of initial efficiency, each of these intersection numbers is between 0

and n−1. This gives the bound stated in Theorem 1.1.

Discussion of the proof. Our method for proving Theorem 1.1 is detailed in Sec-

tion 3. Briefly, the idea is to show that if some geodesic v = v0, . . . ,vn = w is not

initially efficient then we can modify v1, . . . ,vn−1 by surgery in order to reduce the

intersection of v1 with vn. The basic surgeries we use in our proof are not new.

The crucial point—and our new idea—is that it is usually not possible to reduce

intersection by modifying a single vertex; rather, it is often the case that we can

reduce intersection by modifying a sequence of vertices all at the same time.

vn

v0

v1

v′1

v1

v2

v′1
v′2

FIGURE 2. Left: two arcs of v1 and a simplifying surgery; Right: arcs

of v1 and v2 and a simplifying surgery

Here is what we mean by this. Suppose we have a geodesic v0, ...,vn. Say there

is a v0-vn polygon with two parallel arcs of v1 as in the first picture in the left-

hand side of Figure 2. Then we can perform a surgery along the dotted reference

arc as in the figure in order to find a vertex v′1 that is simpler in that it has fewer

intersections with vn. The vertex v′1 can replace v1 in the geodesic since the surgery

did not create any intersections with v0 or v2.

Now suppose we have four parallel arcs of v1, v2, v1, and v2 (in order) as in

the right-hand side of Figure 2. We cannot surger v1 as in the previous paragraph
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because this would create an intersection with v2 (an arc of v2 is in the way). How-

ever, we can perform surgery simultaneously on v1 and v2 along the dotted arc as

in the figure. This gives two new vertices v′1 and v′2 and again we can replace v1

and v2 with these new, simpler vertices.

Our basic strategy is to show that whenever we have an inefficient geodesic we

can find a similar surgery in order to reduce intersection with v0 and vn. If the

reference arc only sees v1 and v2 then the surgeries in the previous two paragraphs

apply. The problem is that when there are more vertices vi involved, there are more

and more complicated surgeries needed, and the combinatorics get to be unwieldy;

look ahead to Figures 11 and 13 for examples of more complicated surgeries.

To deal with this problem, we introduce a new tool, the dot graph. This is a

graphical representation of the sequence of vertices vi seen along a reference arc;

there is a dot at the point (k, i) in the plane if the kth vertex along the arc is vi

(see Figure 8 below). The existence of a simplifying surgery is translated into the

existence of certain two-dimensional shapes in the dot graph (see Figure 9 below).

In this way, the unwieldy combinatorial problem becomes a manageable geometric

one.

Efficiency versus tightness. We already mentioned that there are finitely many tight

geodesics between two vertices of C (Sg) and so Theorem 1.1 gives a second finite

class of geodesics connecting two vertices of C (Sg). The next proposition shows

that the class of efficient geodesics is genuinely new.

Proposition 1.2. Let g ≥ 2. In C (Sg) there are geodesics of length three that are...

(1) efficient and tight,

(2) tight but not efficient, and

(3) efficient but not tight.

We do not know if between any two vertices there always exists a geodesic that

is efficient and tight.

Proposition 1.2 is proved by explicit construction; see Section 2.2. The most

subtle point is the third one, as it is in general not easy to prove that a given geodesic

is not contained in any tight multigeodesic.

While the examples of geodesics in Proposition 1.2 all have length three, we

expect that the result holds for all distances at least three. It is also worth noting

that our constructions are all delicate: it is not obvious how to modify our examples

in order to obtain infinite families of examples.

The efficient geodesic algorithm. We now explain how Theorem 1.1 can be used

in order to give an algorithm for distance in C (Sg), which we call the efficient

geodesic algorithm. It is straightforward to determine if the distance between two

vertices is 0, 1, or 2. So assume that for some k ≥ 2 we have an algorithm for

determining if two vertices of C (Sg) have distance 0, . . . ,k. We would like to give

an algorithm for determining if the distance between two vertices is k+1.

To this end, let v and w be two vertices of C (Sg). By induction we can check if

d(v,w)≤ k. If not, then as in Theorem 1.1 we can explicitly list all possible vertices

v1 on an efficient geodesic v = v0, . . . ,vk+1 = w. If d(v1,w) = k for some choice of
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v1, then d(v,w) = k+ 1; otherwise it follows from Theorem 1.1 (the existence of

efficient geodesics) that d(v,w) 6= k+1.

Corollary 1.3. The efficient geodesic algorithm computes distance in C (Sg).

The special case of the efficient geodesic algorithm when the distance is four

was explained to us by John Hempel and served as inspiration for the cases of

larger distance.

Comparison with previously known algorithms. Our efficient geodesic algorithm

is in the same spirit as the algorithms of Leasure, Shackleton, and Watanabe for

computing distance in C (Sg). All three show that there is a function F of three

variables so that for any two vertices v and w of C (Sg) with d(v,w) = n there is a

geodesic v = v0, . . . ,vn = w with i(v1,w) bounded above by F(g,n, i(v,w)). This

gives an algorithm in the same way as our efficient geodesic algorithm, since there

is an explictly computable list of v1 with i(v,v1) = 0 and i(v1,w)≤ F(g,n, i(v,w)).
While the theorems of Leasure, Shackleton, and Watanabe apply to surfaces that

are not closed, we restrict here to the case of closed surfaces for simplicity.

Our approach also gives such a function F . By only considering reference arcs

that are parallel to arcs of αn \α0 (where α0 and αn are minimally-intersecting

representatives of v0 and vn), we deduce that for any initially efficient geodesic

v= v0, . . . ,vn =w we have i(v1,vn)≤ (n−2)i(v,w) (this uses a slight strengthening

of a special case of Theorem 1.1; see Proposition 3.7 below). So we can take

FBMM(g,n, i(v,w)) = (n−2)i(v,w).

However, this bound does not use the full strength of initial efficiency as it does

not give information as to how these points of intersection are distributed along αn

nor does it take into account reference arcs that are not parallel to αn.

Leasure’s function is

FL(g,n, i(v,w)) = (6(6g−2)+2)ni(v,w).

We can illustrate the improvement of our methods over Leasure’s with the example

in C (S2) from Figure 1. To prove the distance is 4, we can suppose for contradic-

tion that it is 3. According to Leasure, if v1 is the first vertex we meet on a length

3 geodesic from v to w, then we can choose v1 so that it satisfies

i(v1,w)≤ (6(6g−2)+2)3i(v,w) = 623 ·12 = 2,859,936.

By contrast, any v1 on an efficient geodesic of length 3 satisfies i(v1,w)≤ 12 and,

what is more, we know there is at most one intersection of v1 along each edge

of the polygonal decomposition of S2 determined by v and w (cf. Proposition 3.7

below). Because of these strong restrictions, the computation can be carried out by

hand, and in fact we apply the algorithm by hand to this example in Section 2.

Shackleton’s function depends only on i(v,w) and g, but not d(v,w). As ex-

plained by Watanabe [18], Shackleton’s function is

FS(g,n, i(v,w)) = i(v,w)(45(3g−3)3)2log2 i(v,w).
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Watanabe recently improved on Shackleton’s result by replacing the exponen-

tial function with a linear one. His work, like Webb’s, uses the theory of tight

geodesics. Specifically, Watanabe’s function is:

FW (g,n, i(v,w)) = Rg i(v,w)

where Rg = (3g− 3) · 2(M
3(2g−2)(3g−2))3g−1

and M is the minimal possible constant

in the bounded geodesic image theorem. Since Rg is independent of n, it follows

that when n is large compared to g Watanabe’s bounds give a better algorithm for

distance than the efficient geodesic algorithm. However, the smallest known upper

bound for M is 102 (see [22]), and so even for g = 2, we have

Rg > 3 ·24·1034

> 101034

.

Thus, even for g= 2 and some unimaginably large distances, our algorithm is more

effective.

In the appendix we will explain Webb’s algorithm for computing distance via

tight geodesics. As explained to us by Webb [20], his methods give a corresponding

function that again only depends on g:

FW ′(g) =
(6g−6)

(

(4g−5)21 −4g+5
)

2g−3
,

which for g = 2 equals 62,762,119,200.

A more appropriate comparison with Webb’s algorithm is to compare the num-

ber of vertices v1 that need to be tested instead of the quantity i(v1,vn). In Webb’s

algorithm, this number is bounded above by:

2(72g+12)min{n−2,21}(26g−6 −1)

(here we are really counting the number of candidate simplices σ1 along a multi-

geodesic from v to w); see the appendix of this paper for an explanation. On

the other hand, our Theorem 1.1 states that the number of candidate vertices v1

along an efficient geodesic v0, . . . ,vn is bounded above by n6g−6. Our bound is

certainly smaller than Webb’s when min{n − 2,21} = n − 2. In the case that

min{n− 2,21} = 21 we estimate Webb’s bound from below by 2(72g)(21) and we

find that our bound is smaller than Webb’s for all distances less than 221(12), which

is approximately 1075. We conclude that among all known algorithms for distance

in C (S) our methods are by far the most effective for all distances accessible by

modern computers.
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2. EXAMPLES

In this section we do two things. First we illustrate the efficient geodesic algo-

rithm by applying it to the example from Figure 1. Then we prove Proposition 1.2

by giving explicit examples for each of the three statements. All of the examples

will be presented in terms of the branched double cover of Sg over the sphere,

which we now explain.

The branched double cover. Let X2g+2 denote a sphere with 2g+2 marked points.

The double cover branched over the marked points is the closed surface Sg. The

preimage of a simple arc in X2g+2 connecting two marked points is a nonsepa-

rating simple closed curve in Sg, and the preimage of a simple closed curve that

surrounds 2k+1 marked points is a separating simple closed curve in Sg that cuts

off a subsurface of genus k.

Minimally intersecting curves and arcs in X2g+2 lift to minimally intersecting

curves and arcs in Sg. This follows from the work of the first author and Hilden

on the symmetric mapping class group [5]; see also the paper by Winarski [23].

Also, if two minimally intersecting curves or arcs fill X2g+2—meaning that the

complementary components are all disks with at most one marked point each—

then the preimages fill Sg since the preimage of a disk with at most one marked

point is a disk.

2.1. An example of the efficient geodesic algorithm. Consider the two arcs δ
and ε in X6 shown in the left-hand side of Figure 3 (we depict X2g+2 by drawing

2g+ 2 dots in the plane; by adding an unmarked point at infinity, we obtain the

sphere with 2g+2 marked points). Let v and w denote the corresponding vertices

of C (S2), the two-fold branched cover over X6. We would like to show that the

distance between v and w in C (S2) is 4 (it so happens that v and w are the same as

the vertices of C (S2) shown in Figure 1, but we will not need this). The distance

between v and w in C (S2) can be computed with the computer program Metric in

the Curve Complex, but here we explain how to apply our algorithm by hand.

ε

δ

ε

δ+

δ−

FIGURE 3. Left: the arcs δ and ε in X6 corresponding to the curves

shown in Figure 1; Right: the disk ∆ obtained by cutting along δ

First, we will show that d(v,w) ≤ 4. To do this, we observe that the horizontal

line segment connecting the second and third marked points in the left-hand side

of Figure 3 corresponds to a vertex u in C (S2) with i(u,v) = i(u,w) = 1. It follows

that d(u,v) = d(u,w) = 2 and by the triangle inequality that d(v,w) ≤ 4.
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If we cut X6 along δ , we obtain a disk ∆, the shaded disk in the right-hand side

of Figure 3. The boundary of ∆ consists of two copies of δ , say, δ+ and δ−, and

in the figure points of δ+ and δ− are identified in X6 exactly when they lie on the

same vertical line. The arc ε becomes a collection of arcs in ∆ as shown in the

figure. Since the arcs of ε cut ∆ into a disjoint union of disks with at most one

marked point each, it follows that δ and ε fill S2 and so d(v,w) ≥ 3.

It remains to use the efficient geodesic algorithm to show that d(v,w) ≥ 4. As-

sume that d(v,w) were equal to three. By Theorem 1.1 there is a path v,v1,v2,w so

that the number of intersections of v1 with each arc of w\v is at most two (consider

a reference arc parallel to the arc of w\v). Proposition 3.7 below gives an improve-

ment: there is a choice of v1 so that the intersection with each arc of w\v is at most

one point. Also, since v,v1,v2,w is a path, this choice of v1 satisfies d(v1,w)≤ 2;

in other words, (representatives of) v1 and w do not fill S2.

A special feature of the genus two case is that every vertex of C (S2) is obtained

as the preimage of a curve or arc in X6 (this again follows from the work of the first

author with Hilden). In this way, any v1 as in the previous paragraph corresponds

to an arc or curve β in ∆ that intersects each arc of ε in at most one point. There are

only six such candidates for β , namely the six straight line segments connecting

marked points in the interior of ∆. It is straightforward to check that the arc in X6

corresponding to each fills with ε ; indeed, there are only two marked points that

are not endpoints of either ε or β and in each case there is no path between these

marked points that avoids ε and β . Therefore there is no v1 as in the previous

paragraph and we have d(v,w) = 4.

2.2. Efficiency versus tightness. We will now prove Proposition 1.2—that there

are geodesics in C (Sg) that are efficient and tight, geodesics that are efficient but

not tight, and geodesics that are tight but not efficient. First we recall the definition

of a tight geodesic.

Tight geodesics. A tight multigeodesic is a sequence of simplices σ0, . . . ,σn in

C (S) where

(1) σ0 and σn are vertices,

(2) the distance between vi and v j is | j− i| whenever i 6= j and vi and v j are

vertices of σi and σ j, respectively, and

(3) for each 1 ≤ i ≤ n− 1 the simplex σi can be represented as the union of

the essential components of the boundary of a regular neighborhood in S

of minimally-intersecting representatives of σi−1 and σi+1.

This definition is due to Masur and Minsky.1 We will refer to any sequence of

vertices v0, . . . ,vn with vi ∈ σi as a tight geodesic.

Proof of Proposition 1.2. We begin with the first statement, that there are geodesics

in C (Sg) that are both efficient and tight. Consider the arcs δ0, δ1, δ2, and δ3 in X12

shown in Figure 4. As above, each arc δi represents a vertex vi of C (S5). We have

d(v0,v3) = 3 since δ0 and δ3 fill X12.

1Masur and Minsky used the term “tight geodesic,” instead of “tight multigeodesic,” language we

prefer to avoid because the object in question is not a geodesic.
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To see that the geodesic v0,v1,v2,v3 is efficient we first note that δ1 intersects

only two regions of X12 determined by δ0 and δ3. One of these regions is a bigon

with one marked point; the preimage of this is a rectangular region in S5 and so it

can be ignored. The other region is a disk with no marked points and its preimage

is a pair of disks in S5. The preimage of δ1 passes through each of these disks in

S5 once, whence the initial efficiency of v0,v1,v2,v3. There is an obvious symme-

try of X12 reversing the geodesic and so v3,v2,v1,v0 is initially efficient. Hence

v0,v1,v2,v3 is indeed efficient.

δ0

δ ′
1 δ ′′

1δ1

δ ′
2 δ ′′

2δ2

δ3

FIGURE 4. Arcs giving a geodesic in C (S5) that is both efficient and tight

Let v′i and v′′i denote the vertices of C (S5) corresponding to the arcs δ ′
i and δ ′′

i .

The simplices σ1 = {v1,v
′
1,v

′′
1} and σ2 = {v2,v

′
2,v

′′
2} give a tight multigeodesic

v0,σ1,σ2,v3 with v1 ∈ σ1 and v2 ∈ σ2, certifying that v0,v1,v2,v3 is a tight geo-

desic. (To verify this, note that the preimage in Sg of a disk with two marked points

in X2g+2 is an annulus.)

For any odd g > 2 a straightforward generalization applies. For even g a slight

modification is needed; for instance to obtain an analogous example for S4 from

Figure 4, we move the left-hand endpoints of δ0 and δ3 together and we move the

right-hand endpoints together as well, giving a collection of arcs in X10.

δ0

δ2

δ3

FIGURE 5. Left: Arcs in X8 giving a tight geodesic in C (S3); Middle:

The outer 10-gon in X8 cut along δ0 and δ3 shown with arcs of δ1; Right:

The preimage of the 10-gon in S3 shown with the preimage of δ1

We now give examples of geodesics that are tight but not efficient. Consider the

arcs δ0, δ2, and δ3 shown in the left-hand side of Figure 5. Let δ1 be the boundary

of a regular neighborhood of δ0 ∪ δ2; this δ1 is a curve surrounding three marked

points. Let v0,v1,v2,v3 be the corresponding path in C (S3). We have d(v0,v3)≥ 3

since δ0 and δ3 fill X8. By definition v0,v1,v2,v3 is tight at v1 (meaning that the

third part of the definition of a tight multigeodesic is satisfied for i = 1) and it is
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straightforward to check that it is tight at v2; so more than being contained in a tight

multigeodesic, the given geodesic is itself a tight multigeodesic (in other words,

v0,v1,v2,v3 is a tight multigeodesic with a single associated tight geodesic).

We will now show that the oriented geodesic v0,v1,v2,v3 is not initially efficient.

If we cut X8 along δ0 and δ3 there is a single region that is not a bigon with one

marked point, namely, the region containing the (umarked!) point at infinity. There

are five arcs of δ1 in this disk as shown in the middle picture of Figure 5 (the exact

configuration relative to the marked point is important here). The preimage of this

10-gon in S3 is a 20-gon, and the arcs of the preimage of δ1 are arranged as in

the right-hand side of Figure 5. It is easy to find a reference arc in this polygon

that intersects the preimage of δ1 in more than two points. Thus v0,v1,v2,v3 is

not initially efficient; of course this implies that v0,v1,v2,v3 is not efficient. The

generalization to higher genus should be clear.

δ1

δ2

δ0

δ3

δ1

FIGURE 6. Arcs giving an efficient geodesic in C (S3) that is not tight

Finally we give examples of geodesics that are efficient but not tight. Consider

the arcs δ0, δ1, δ2, and δ3 shown in Figure 6 (the arcs δ0, δ1, and δ3 are shown in

the top picture of the figure and the arcs δ0, δ1, and δ2 are shown at the bottom).

Again, each δi represents a vertex vi of C (S3) and again d(v0,v3) = 3 since δ0 and

δ3 fill X8.

To see that the oriented geodesic v0,v1,v2,v3 is initially efficient we notice that

δ1 lies in a single region of X8 determined by δ0 and δ3 and in that region it connects

two marked points, one of which lies on δ3. It follows that the preimage of δ1 in S3

is a single nonseparating simple closed curve and if we cut S3 along the preimages

of δ0 and δ3 then this nonseparating curve becomes a single diagonal in a single

polygonal region of the cut-open surface. From this it follows that v0,v1,v2,v3 is

initially efficient.
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A similar argument shows that the oriented geodesic v3,v2,v1,v0 is initially ef-

ficient. Indeed, the intersection of the arc δ2 with each region of X8 determined by

δ0 and δ3 is a single arc. It follows that the preimage of δ2 in S3 intersects each

polygonal region of S3 in one or two arcs (depending on whether the correspond-

ing arc in X8 terminates at a marked point not contained in δ0 ∪ δ3). As such, any

reference arc in S3 for the preimages of δ0 and δ3 can intersect the preimage of δ2

in at most two points. The efficiency of v0,v1,v2,v3 follows.

We will now show that v0,v1,v2,v3 is not tight, in other words that v0,v1,v2,v3 is

not contained in any tight multigeodesic. Suppose σ0,σ1,σ2,σ3 were a tight multi-

geodesic containing v0,v1,v2,v3. First of all, by definition we would have σ0 = v0

and σ3 = v3. Second, since (representatives of) v0 and v2 fill the complement of

(a representative of) v1 we must have that σ1 = v1. Now we notice that v2 does

not lie in a regular neighborhood of the union of representatives of σ1 = v1 and

σ3 = v3 (since we can find an arc in X8 that intersects δ2 without intersecting δ1 or

δ3). Therefore, for any choice of simplex σ2 containing v2 we will still have the

property that σ2 does not lie in a regular neighborhood of the union of representa-

tives of σ1 and σ3; in particular, for any choice of σ2 containing v2, the sequence

σ0,σ1,σ2,σ3 is not tight at σ2. Hence v0,v1,v2,v3 is not tight, as desired. Again

the generalization to higher genus is clear. �

3. EXISTENCE OF EFFICIENT GEODESICS

In this section we prove the main result of this paper, Theorem 1.1. The main

point is to prove the existence of initially efficient geodesics (Proposition 3.2), and

this will occupy most of the section. At the end we give the additional inductive

argument for the existence of efficient geodesics (Theorem 1.1). Let g ≥ 2 be fixed

throughout.

3.1. Setup: a reducibility criterion. Our first goal is to recast the problem of

finding initially efficient paths in terms of sequences of numbers; see Proposi-

tion 3.1 below.

Standard representatives and intersection sequences. Let v and w be vertices of

C (Sg) with d(v,w) ≥ 3. Let v = v0, . . . ,vn = w be an arbitrary path from v to w.

We can choose representatives αi of the vi with the following properties:

(1) each αi is in minimal position with both α0 and αn,

(2) each intersection αi ∩αi+1 is empty, and

(3) all triple intersections of the form αi ∩α j ∩αk are empty.

To do this, we take the αi to be geodesics with respect to some hyperbolic metric

on Sg and then perform small isotopies to remove triple intersections. We say that

such a collection of representatives for the vi is standard. Note that we do not insist

that αi and α j are in minimal position when 0 < i, j < n and |i− j|> 1.

Let γ be a reference arc for the standard set of representatives α0, . . . ,αn, by

which we mean that:

(1) γ has its interior disjoint from α0 ∪αn,

(2) γ has endpoints disjoint from α1, . . . ,αn−1,
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(3) all triple intersections αi ∩α j ∩ γ are trivial for i 6= j, and

(4) γ is in minimal position with each of α1, . . . ,αn−1.

A reference arc for α0, . . . ,αn is automatically a reference arc for the triple α0,α1,αn

as in the introduction, but not the other way around. We will need to deal with this

discrepancy in the proof of Proposition 3.2 below.

Denote the cardinality of γ ∩ (α1 ∪ ·· · ∪αn−1) by N. Traversing γ in the di-

rection of some chosen orientation, we record the sequence of natural numbers

σ = ( j1, j2, . . . , jN) ∈ {1, . . . ,n− 1}N so that the ith intersection point of γ with

α1 ∪ ·· · ∪αn−1 lies in α ji . We refer to σ as the intersection sequence of the αi

along γ .

Complexity of paths and reducible sequences. We define the complexity of an ori-

ented path v0, . . . ,vn in C (S) to be

n−1

∑
k=1

(i(v0,vk)+ i(vk,vn)) .

We say that a sequence σ of natural numbers is reducible under the following

circumstances: whenever σ arises as an intersection sequence for a (standard set of

representatives for a) path v0, . . . ,vn in C (Sg) and some choice reference arc there

is another path v′0, . . . ,v
′
n with v′0 = v0 and v′n = vn and with smaller complexity.

Proposition 3.1. Suppose σ is a sequence of elements of {1, . . . ,n− 1}. If σ has

more than n−1 entries equal to 1, then σ is reducible.

We can deduce the existence of initially efficient geodesics easily from Proposi-

tion 3.1.

Proposition 3.2. Let g ≥ 2. If v and w are vertices of C (Sg) with d(v,w)≥ 3, then

there exists an initially efficient geodesic from v to w.

Proof of Proposition 3.2 assuming Proposition 3.1. Let v and w be vertices of C (Sg)
with d(v,w)≥ 3. Since the complexity of any path from v to w is a natural number,

there is a geodesic of minimal complexity. We will show that any geodesic from v

to w that has minimal complexity must be initially efficient.

To this end, we consider an arbitrary geodesic v = v0, . . . ,vn = w and we as-

sume that it is not initially efficient. In other words there is a set of representa-

tives α0,α1,αn for v0,v1,vn that are in minimal position and a reference arc γ for

α0,α1,αn with |α1 ∩ γ |> n−1.

We can extend the triple α0,α1,αn to a set of standard representatives α0, . . . ,αn

for the whole geodesic v0, . . . ,vn. What is more, we may assume that γ is a refer-

ence arc for this full set of representatives α0, . . . ,αn.

Indeed, if γ is not in minimal position with some αi with 2 ≤ i ≤ n−1 then by

an adaptation of the usual bigon criterion for simple closed curves we have that γ
and αi cobound an embedded bigon; if we choose an innermost such bigon (with

respect to γ) and push the corresponding αi across, then we can eliminate the bigon

without creating any new points of intersection between γ with any α j or between

any two α j. (Alternatively, as in the introduction, we can assume that each αi with
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1 ≤ i ≤ n− 1 is a straight line segment in each polygon determined by α0 and αn

and we can take γ to be any straight line segment; this procedure always yields a γ
that is in minimal position with each αi).

Since we did not change α1, the new intersection sequence of α0, . . . ,αn with γ
still has more than n− 1 entries equal to 1. By Proposition 3.1, the sequence σ is

reducible. This implies that v0, . . . ,vn does not have minimal complexity, and we

are done. �

Notice that the approach established in Proposition 3.1 disregards all informa-

tion about a path in C (Sg) except its intersection sequences. For instance, we will

not need to concern ourselves with how the strands of the αi are connected outside

of a neighborhood of γ .

We will prove Proposition 3.1 in three stages. First, in Section 3.2 we describe

a normal form for sequences of natural numbers (Lemma 3.3 below) and also de-

scribe an associated diagram for the normal form called the dot graph. Next in

Section 3.3 we will show that if the dot graph exhibits certain geometric features—

empty boxes and hexagons—then the sequence is reducible (Lemma 3.4). Finally

in Section 3.4 we will show that any sequence in normal form that does not sat-

isfy Proposition 3.1 has a dot graph exhibiting either an empty box or an empty

hexagon, hence proving Proposition 3.1.

3.2. Stage 1: Sawtooth form and the dot graph. The main goal of this section

is to give a normal form for sequences of natural numbers that interacts well with

our notion of reducibility. We also describe a way to diagram sequences in normal

form called the dot graph.

Sawtooth form. We say that a sequence ( j1, j2, . . . , jk) of natural numbers is in

sawtooth form if

ji < ji+1 =⇒ ji+1 = ji +1.

An example of a sequence in sawtooth form is (1,2,2,3,4,3,4,3,4,2,3,4,5). If a

sequence of natural numbers is in sawtooth form, we may consider its ascending

sequences, which are the maximal subsequences of the form k,k+1, . . . ,k+m. In

the previous example, the ascending sequences are (1,2), (2,3,4), (3,4), (3,4),
and (2,3,4,5).

Lemma 3.3. Let σ be a sequence of natural numbers. There exists an intersection

sequence τ in sawtooth form so that τ differs from σ by a permutation of its entries

and so that σ is reducible if and only if τ is.

Proof. Suppose σ = ( j1, . . . , jN) is the intersection sequence for a set of standard

representatives α0, . . . ,αn along an arc γ ⊆ αn \α0. The basic idea we will use

is that if | ji − ji+1| > 1, then we can modify α ji and α ji+1
to new curves α ′

ji
and

α ′
ji+1

so that the new curves still form a set of standard representatives for the

same path and so that the new intersection sequence along γ differs from σ by

a transposition of the consecutive terms ji and ji+1; see Figure 7. We call the

resulting modification of σ a commutation.
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γ

α ji α ji+1 α ′
ji

α ′
ji+1

FIGURE 7. A commutation

It suffices to show that if a sequence σ is not in sawtooth form, then it is possible

to perform a finite sequence of commutations so that the resulting sequence τ is in

sawtooth form. Indeed, τ appears as an intersection sequence for a particular path

in C (Sg) if and only if σ does (the key is that, since | ji − ji+1|> 1, commutations

never result in a nonempty intersection of the form αi ∩αi+1).

We say that σ fails to be in sawtooth form at the index i if ji+1 > ji + 1. Let

k = k(σ) be the highest index at which σ fails to be in sawtooth form, and say

that k is zero if σ is in sawtooth form. Assuming k > 0, we will show that we

can modify σ by a sequence of commutations so that the highest index where the

resulting sequence fails to be in sawtooth form is strictly less than k.

We decompose σ into a sequence of subsequences of σ , namely,

(σ1,σ2,σ3,σ4)

where σ2 is the singleton ( jk) and σ3 is the longest subsequence of σ starting from

the (k+1)st term so that each term is greater than jk +1. The sequences σ1 and σ4

are thus determined, and one or both might be empty.

By a series of commutations, we can modify σ to the sequence

σ ′ = (σ1,σ3,σ2,σ4).

We claim that k(σ ′) < k(σ). Since the sequence (σ1,σ2) is in sawtooth form and

the length of σ1 is k− 1, it is enough to show that the subsequence (σ3,σ2,σ4) is

in sawtooth form.

By the definition of k, we know that σ3 is in sawtooth form. Next, the last

term of σ3 is greater than jk + 1 and the first (and only) term of σ2 is jk, and so

these terms satisfy the definition of sawtooth form. We know σ2 = ( jk) and the

first term of σ4, call it j, is at most jk +1, and so these terms are also in sawtooth

form. Finally, the subsequence σ4 is in sawtooth form by the definition of k. This

completes the proof. �

Dot graphs. It will be useful to draw the graph in R
2
≥0 of a given sequence of

natural numbers, where the sequence is regarded as a function {1, . . . ,N} → N.

The points of the graph of a sequence σ will be called dots. We decorate the graph

by connecting the dots that lie on a given line of slope 1; these line segments will

be called ascending segments. The resulting decorated graph will be called the dot

graph of σ and will be denoted G(σ); see Figure 8.
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FIGURE 8. Example of dot graph of a sequence in sawtooth form

3.3. Stage 2: Dot graph polygons and surgery. The goal of this section is to de-

scribe certain geometric shapes than can arise in a dot graph, and then to prove that

if the dot graph G(σ) admits one of these shapes then the sequence σ is reducible

(Lemma 3.4).

Dot graph polygons. We say that a polygon in the plane is a dot graph polygon if

(1) the edges all have slope 0 or 1,

(2) the edges of slope 0 have nonzero length, and

(3) the vertices all have integer coordinates.

The edges of slope 1 in a dot graph polygon are called ascending edges and the

edges of slope 0 are called horizontal edges.

Let σ be a sequence of natural numbers in sawtooth form. A dot graph polygon

is a σ -polygon if:

(1) the vertices are dots of G(σ) and

(2) the ascending edges are contained in ascending segments of G(σ).

FIGURE 9. A box, a hexagon of type 1, and a hexagon of type 2; the red

(darker) dots are required to be endpoints of ascending segments, while

the blue (lighter) dots may or may not be endpoints

A box in G(σ) is a σ -quadrilateral P with the following two properties:

(1) the leftmost ascending edge contains the highest point of some ascending

segment of G(σ) and

(2) the rightmost ascending edge contains the lowest point of some ascending

segment of G(σ).
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We will also need to deal with hexagons. Up to translation and changing the

edge lengths, there are four types of dot graph hexagons; two have an acute exterior

angle, and we will not need to consider these. Notice that a dot graph hexagon nec-

essarily has a leftmost ascending edge, a rightmost ascending edge, and a middle

ascending edge. This holds even for degenerate hexagons since horizontal edges

are required to have nonzero length.

A hexagon of type 1 in G(σ) is a σ -hexagon where:

(1) no exterior angle is acute,

(2) the middle ascending edge is an entire ascending segment of G(σ), and

(3) the minimum of the middle ascending edge equals the minimum of the

leftmost ascending edge,

(4) the leftmost ascending edge contains the highest point of an ascending

segment of G(σ).

Similarly, a hexagon of type 2 in G(σ) is a σ -hexagon that satisfies the first two

conditions above and the following third and fourth conditions:

(3′) the maximum of the middle ascending edge equals the maximum of the

rightmost ascending edge,

(4′) the rightmost ascending edge contains the lowest point of an ascending

segment of G(σ).

See Figure 9 for pictures of boxes and hexagons of types 1 and 2.

The following lemma is the main goal of this section. We say that a horizontal

edge of a σ -polygon is pierced if its interior intersects G(σ). Also, we say that a

σ -polygon is empty if it there are no points of G(σ) in its interior.

Lemma 3.4. Suppose that σ is a sequence of natural numbers in sawtooth form

and that G(σ) has an empty, unpierced box or an empty, unpierced hexagon of type

1 or 2. Then σ is reducible.

Before we prove Lemma 3.4, we need to introduce another topological tool,

surgery on curves.

Surgery. Let α be a simple closed curve in a surface and let γ be an oriented arc

so that α and γ are in minimal position. We can form a new curve α ′ from α
by performing surgery along γ as follows. We first remove from α small open

neighborhoods of two points of α ∩ γ that are consecutive along γ . What remains

of α is a pair of arcs; we can connect the endpoints of either arc by another arc

δ that lies in a small neighborhood of γ in order to create the new simple closed

curve α ′ (the other arc of α is discarded); see Figure 10.

We draw a neighborhood of γ in the plane so that γ is a horizontal arc oriented

to the right. We say that α ′ is obtained from α by ++, +−, −+, or −− surgery

along γ ; the first symbol is + or − depending on whether the first endpoint of δ
(as measured by the orientation of γ) lies above γ or below, and similarly for the

second symbol.

In general, for a given pair of intersection points of a curve α with γ , exactly

two of the four possible surgeries result in a simple closed curve. If we orient α ,
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then the two intersection points of α with γ can either agree or disagree. If they

agree, then the +− and −+ surgeries, the odd surgeries, result in a simple closed

curve, and if they disagree, the ++ and −− surgeries, the even surgeries, result in

a simple closed curve.

α α

γ

++ −− +− −+

FIGURE 10. The four types of surgery on a curve along an arc

These surgeries will of course only be of use to us if the curve α ′ is an essential

simple closed curve in S. One variant of the well-known bigon criterion is that

a curve α and an arc γ are in minimal position if and only if every closed curve

formed from α and γ as above is essential. Indeed, the proof in the case where α
and γ are both closed curves (see [1, Proposition 3.10]) can be adapted to this case.

Thus our α ′ is essential.

Surfaces with boundary. In order to show that our surgered curves are essential,

we used a version of the bigon criterion. This bigon criterion is exactly what fails

in the case of surfaces with boundary. For instance, suppose that the surface S has

at least two boundary components and consider a simple closed curve α that cuts

off a pair of pants in S. If γ is an arc that intersects α in two points then both of

the curves obtained by surgering α along γ are homotopic to components of the

boundary of S, neither of which represents a vertex of C (S).

We now use the surgeries described above to prove that a dot graph with an

empty, unpierced box or an empty, unpierced hexagon of type 1 or 2 corresponds

to a sequence that is reducible.

Proof of Lemma 3.4. Suppose that σ appears as an intersection sequence with re-

spect to a reference arc γ for a set of standard representatives α0, . . . ,αn for a path

v0, . . . ,vn in C (Sg). We need to replace the αi with new curves α ′
i so that the re-

sulting path from v0 to vn has smaller complexity. We treat the three cases in turn,

according to whether G(σ) has an empty, unpierced box or an empty, unpierced

hexagon of type 1 or 2.

Suppose G(σ) has an empty, unpierced box P. By the definitions of sawtooth

form and empty boxes there are no ascending edges of G(σ) in the vertical strip

between the two ascending edges of P, that is, the dots of P correspond to a subse-

quence of σ of the form

k, . . . ,k+m, k, . . . ,k+m

where 1 ≤ k ≤ k+m ≤ n−1.



EFFICIENT GEODESICS AND AN EFFECTIVE ALGORITHM FOR DISTANCE 19

3 4 5 3 4 5 3′ 4′ 5′

5
−+

4
++

3
+−

FIGURE 11. An example of a set of surgeries as in the box case of Lemma 3.4

First, for i /∈ {k, . . . ,k+m} we set α ′
i = αi. We then define α ′

k, . . . ,α
′
k+m induc-

tively: for i = k, . . . ,k+m, the curve α ′
i is obtained by performing surgery along γ

between the two points of αi ∩ γ corresponding to dots of P and the surgeries are

chosen so that they form a path in the directed graph in Figure 12 (of course for

each i we must choose one of the two surgeries that results in a closed curve).

++

+−

−+

−−

FIGURE 12. The directed graph used in the proof of Lemma 3.4

The vertices of the graph in Figure 12 correspond to the four types of surgeries:

++, +−, −+, and −−, and the rule is that the second sign of the origin of a

directed edge is the opposite of the first sign of the terminus. Since every vertex has

one outgoing arrow pointing to an even surgery and one outgoing arrow pointing

to an odd surgery, the desired sequence of surgeries exists; in fact it is completely

determined by the choice of surgery on αk, and so there are exactly two possible

sequences. See Figure 11 for an example of this procedure; there we perform +−
surgery on α3, then ++ surgery on α4, then −+ surgery on α5.

For 0 ≤ i ≤ n, let v′i be the vertex of C (Sg) represented by α ′
i . We need to check

that the v′i certify the reducibility of σ , namely that

(1) v′0 = v0 and v′n = vn,

(2) each v′i is connected to v′i+1 by an edge in C (Sg), and
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(3) the complexity of v′0, . . . ,v
′
n is strictly smaller than that of v0, . . . ,vn.

The first condition holds because 1 ≤ k ≤ k +m ≤ n− 1. The second condition

holds because each intersection αi ∩αi+1 is empty and the surgeries do not create

new intersections. For the third condition, we claim that something stronger is true,

namely, that

i(v0,v
′
i)+ i(v′i,vn)≤ i(v0,vi)+ i(vi,vn)

for all i and that

i(v0,v
′
k)+ i(v′k,vn)< i(v0,vk)+ i(vk,vn).

Indeed, if we consider the polygonal decomposition of Sg determined by α0 ∪αn

we see that when we surger two strands of some αi along γ we create no new

intersections with α0∪αn and we remove two intersections with α0∪αn (we might

also create a bigon, but this would only help our case). Since we performed at least

one surgery—on αk—our claim is proven.

3 4 5 6 7 3 4 5 2 3 4 5 6 7 5′ 6′ 3′ 7′×

4′

−+
7

++
6

+−
5 ×

−−
4

−+3
2

FIGURE 13. An example of a set of surgeries as in the hexagon case of

Lemma 3.4

The cases of empty, unpierced hexagons of types 1 and 2 are similar, but one

new idea is needed. These two cases are almost identical, and so we will only treat

the first case, that is, we suppose G(σ) has an empty, unpierced hexagon P of type

1. By the definition of sawtooth form and the definition of an empty, unpierced

hexagon of type 1, there are no ascending segments of G(σ) in the vertical strip

between the leftmost and middle ascending edges of P and any ascending segments

of G(σ) that lie in the vertical strip between the middle and rightmost ascending

segments have their highest point strictly below the lower-right horizontal edge of

P. It follows that σ has a subsequence of the form

k, . . . ,k+m, k, . . . ,k+ ℓ, j1, . . . , jp, k+ ℓ, . . . ,k+m
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where 1 ≤ k ≤ k+ ℓ ≤ k+m ≤ n− 1, p ≥ 0, and each ji < k+ ℓ, and the dots of

P correspond to the terms between k and k+m (all but the ji-terms above). See

Figure 13 for an example where k = 3, ℓ= 2, m = 4, and p = 0.

Again, for each αi with i /∈ {k, . . . ,k+m} we set α ′
i = αi. Each of the remaining

αi corresponds to exactly two dots in P except for αk+ℓ, which corresponds to

three. Let α ′
k+ℓ be the curve obtained from α ′

k+ℓ via surgery along γ between the

first two (leftmost) points of α ′
k+ℓ ∩ γ corresponding to dots of P and satisfying

the following property: α ′
k+ℓ does not contain the arc of αk+ℓ containing the third

(rightmost) point of αk+ℓ∩ γ corresponding to a dot of P. As always, there are two

choices of surgery given two consecutive points of αk+ℓ∩ γ ; one contains this third

intersection point and one does not.

We then define α ′
k+ℓ−1, . . . ,α

′
k inductively as before using Figure 12 (notice the

reversed order), and finally we define α ′
k+ℓ+1, . . . ,α

′
k+m inductively as before.

By our choice of α ′
k+ℓ, we have that α ′

k+ℓ ∩α ′
k+ℓ+1 = /0, as required; indeed,

we eliminated the strand of α ′
k+ℓ that was in the way between the two strands of

αk+ℓ+1 being surgered. Also, since each ji is strictly less than k+ ℓ, the curves

α ′
k+ℓ+1, . . . ,α

′
k+m satisfy the condition that α ′

i ∩α ′
i+1 = /0. The other conditions in

the definition of a reducible sequence are easily verified as before. This completes

the proof of the lemma. �

3.4. Stage 3: Innermost polygons. In this section we will put together Lem-

mas 3.3 and 3.4 in order to prove Proposition 3.1. We begin with two lemmas.

Lemma 3.5. If a dot graph G(σ) contains a box P pierced in exactly one edge,

then it contains an unpierced box.

Proof. Denote the ascending edges of P by e and f . There is an ascending seg-

ment e′ intersecting the interior of exactly one of the two horizontal edges of P; we

choose e′ to be rightmost if it intersects the bottom edge of P and leftmost if it in-

tersects the top edge. Either way, we find a box P′ pierced in at most one edge and

where one ascending edge is contained in e′ and the other ascending edge is con-

tained in P (we take the rightmost ascending edge of P if e′ pierces the bottom edge

of P and the leftmost ascending edge of P otherwise). The box P′ has horizontal

edges strictly shorter than those of P. Therefore, we may repeat the process until it

eventually terminates, at which point we find the desired unpierced box. �

Lemma 3.6. Among all unpierced boxes and hexagons of type 1 and 2 in a dot

graph G(σ), an innermost unpierced box or hexagon of type 1 or 2 is empty.

Proof. We treat the three cases separately. First suppose that P is an unpierced box

that is not empty. We will show that P either contains another unpierced box or

an unpierced hexagon of type 1. Let e be an ascending segment contained in the

interior of P. We choose e so that max(e) is maximal among all such ascending

segments, and we further choose e to be rightmost among all ascending segments

with maximum equal to max(e).
There is a unique (possibly degenerate) hexagon P′ of type 1 with one edge equal

to e, and the other two edges contained in the ascending edges of P; see the left-

hand side of Figure 14. If P′ is unpierced, we are done, so assume that P′ is pierced.
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FIGURE 14. Inside a box, inside a hexagon, inside a hexagon

By construction, the top horizontal edge of P′ and the lower-right horizontal edge

of P′ are unpierced. Suppose that the interior of the lower-left horizontal edge of

P′ were pierced. Let e′ be the rightmost ascending segment of G(σ) that pierces

this edge of P′. By the choice of e, we have that max(e′)≤ max(e), and so there is

a box pierced in at most one edge whose ascending edges are contained in e′ and

e. By Lemma 3.5, there is an unpierced box contained in this pierced box, and so

P is not innermost among unpierced boxes and hexagons of type 1 and 2.

The second case is where P is an unpierced hexagon of type 1. Again suppose

that P is not empty. Let e be an ascending segment contained in the interior of

P that has the largest maximum max(e) over all such segments and is rightmost

among all such ascending segments. Let m denote the middle ascending edge of

P. It follows from the fact that σ is in sawtooth form that there are no ascending

segments of G(σ) that lie inside P and to the right of m; so e lies to the left of m.

We now treat two subcases, depending on whether max(e) > max(m) or not.

If max(e) > max(m), there is a maximal hexagon P′ of type 1 with ascending

edges contained in P∪ e as in the middle picture of Figure 14. By the same ar-

gument as in the previous case, P′ is either unpierced or it contains an unpierced

box.

If max(e) ≤ max(m), the argument is similar. There is a hexagon P′ of type 2

as shown in the right-hand side of Figure 14. The topmost edge of P′ is unpierced

by the choice of e. The bottom edge of P′ is unpierced since it is a horizontal edge

for P, which is unpierced. And if the third horizontal edge of P′ were pierced, we

could find a box pierced in at most one edge, hence an unpierced box, as in the

previous cases. It follows that P′ is unpierced and again P is not innermost.

The third and final case is where P is an unpierced hexagon of type 2. This is

completely analogous to the previous case; in fact, if we rotate the two pictures

from the type 1 case by π we obtain the required pictures for the type 2 case. �

We can now use the two previous lemmas to prove Proposition 3.1.

Proof of Proposition 3.1. Let σ be a sequence of elements of {1, . . . ,n− 1}. By

Lemma 3.3 we may assume that σ is in sawtooth form without changing the num-

ber of entries equal to 1; call this number k. Let e1, . . .ek denote the ascending

segments of G(σ) with minimum equal to 1, ordered from left to right.

If max(ei+1) < max(ei) for all i, then since max(e1) ≤ n − 1 it follows that

k ≤ n− 1. Therefore, it suffices to show that if max(ei+1) ≥ max(ei) for some i

then σ is reducible.
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Suppose then that max(ei+1)≥ max(ei) for some i. The first step is to show that

G(σ) has an unpierced box. Let e be the first ascending segment (from left to right)

that appears after ei and has max(e) ≥ max(ei). Because min(e) ≥ min(ei) = 1,

there is evidently a (possibly degenerate) box P0 with two edges contained in ei

and e and two horizontal edges with heights min(e) and max(ei). By the definition

of e, the interior of the upper horizontal edge of P0 is disjoint from G(σ), so P0 is

pierced in at most one edge. By Lemma 3.5, P0 contains an unpierced box.

Let P now be an innermost unpierced box or hexagon of type 1 or 2; such P

exists because each σ -polygon contains a finite number of dots of G(σ) and a

polygon contained inside another polygon contains a fewer number of dots. By

Lemma 3.6, the polygon P is empty. By Lemma 3.4, σ is reducible. �

3.5. From initially efficient geodesics to efficient geodesics. At this point we

have established the existence of initially efficient geodesics (Proposition 3.2). It

remains to establish the existence of efficient geodesics (Theorem 1.1).

Total complexity. For an oriented path q in C (Sg) with vertices w0, . . . ,wn define

the complexity κ(q) as before:

κ(q) =
n−1

∑
k=1

(i(w0,wk)+ i(wk,wn)) .

Next, for an oriented path p with vertices v0, . . . ,vn, let p1 be the oriented path

vn, . . . ,vn−3 and let pk be the oriented path vn−k−1, . . . ,vn for 2 ≤ k ≤ n− 1. The

total complexity of a path p is the ordered (n−1)-tuple:

κ̂(p) = (κ(p1), . . . ,κ(pn−1)).

We order the set Nn−1—hence the set of total complexities—lexicographically.

Proof of Theorem 1.1. Let v and w be vertices of C (Sg) with d(v,w)≥ 3. We claim

that any geodesic from v to w that has minimal total complexity must be efficient.

Let p be an arbitrary geodesic v = v0, . . . ,vn = w and assume that p is not effi-

cient. In other words, one of the corresponding paths pk with vertices w0, . . . ,wnk

is not initially efficient. This is the same as saying that there is a set of represen-

tatives β0,β1,βnk
for w0,w1,wnk

that are in minimal position and a reference arc γ
with |β1 ∩ γ |> nk −1.

As in the proof of Proposition 3.2 we can extend the triple β0,β1,βnk
to a full

standard set of representatives β0, . . . ,βnk
for pk. And as in the proof of Proposi-

tion 3.1 there are surgeries that reduce the complexity of pk. The curves obtained

by these surgeries not only give a new path between the endpoints of pk, but they

also give rise to a new path between v and w.

The key observation here is that, by our choice of the order of the pi, the surg-

eries used in modifying pk do not increase the complexity of any pi with i < k.

Indeed, these surgeries do not increase the intersection between any of the curves

β0, . . . ,βnk
and all of the vertices of p used in the computation of κ(pi) with i < k

are already vertices of pk, namely, the vertices represented by β0, . . . ,βnk
. The

theorem follows. �



24 JOAN BIRMAN, DAN MARGALIT, AND WILLIAM MENASCO

3.6. An improved algorithm in a special case. We end this section by stating

and proving the alternate version of the efficient geodesic algorithm that was used

in the example at the start of Section 2.1. This proposition is equivalent to the main

theorem (Theorem 1.1) of the first version of this paper [4].

Proposition 3.7. Suppose v and w are vertices of C (Sg) with d(v,w) ≥ 3. Let α
and β be representatives of α and β that are in minimal position. Then there is

a geodesic v = v0, . . . ,vn = w and a representative α1 of v1 so that the number of

intersections of α1 with each arc of β \α is at most d(v,w)−2.

Proof. The proof is essentially the same as the proof of Theorem 1.1. The only

added observation is that, since γ is a subset of β , every intersection sequence can

be taken to have entries in {1, . . . ,n−2} instead of {1, . . . ,n−1}. �

Note that in the special case that vertices v and w have representatives α and β
that cut the surface into rectangles and hexagons only (e.g. the example of Sec-

tion 2), then every reference arc is parallel to a reference arc as in Proposition 3.7,

and so in this case there are geodesics that are extra efficient in the sense that the

intersection of a representative of v1 with any reference arc is at most n−2 instead

of n−1.

APPENDIX A. WEBB’S ALGORITHM

In this appendix we give an exposition of Webb’s algorithm for computing dis-

tance in C (S). As with the efficient geodesic algorithm we will make the inductive

hypothesis that for some n ≥ 3 we have an algorithm to determine if the distance

between two vertices is 0, . . . ,n−1 and we would like to give an algorithm for de-

termining if the distance between two vertices is n. First we introduce an auxiliary

tool, the arc complex for a surface with boundary.

Arc complex. Let F be a compact surface with nonempty boundary. The arc com-

plex A (F) is the simplicial complex with k-simplices corresponding to (k + 1)-
tuples of homotopy classes of essential arcs in F with pairwise disjoint represen-

tatives. Here, homotopies are allowed to move the endpoints of an arc along ∂F ,

and an arc is essential if it is not homotopic into ∂F .

The algorithm. In what follows, we assume that χ(F) < 0. A maximal simplex

of A (F) can be regarded as a triangulation of the surface obtained from F by

collapsing each component of the boundary to a point. If F is a compact, orientable

surface of genus g with m boundary components, then the number of edges in any

such triangulation is 6g+3m−6.

Let v and w be two vertices of C (S) with d(v,w)≥ 3. As in the efficient geodesic

algorithm, it suffices by the induction hypothesis to list all candidates for vertices

v1 on a tight geodesic v = v0, . . . ,vn = w. Since there are finitely many vertices in

each simplex of C (S) it further suffices to list all candidates for simplices σ1 on a

tight multigeodesic v = σ0, . . . ,σn = w.

Suppose we have such a tight multigeodesic v = σ0, . . . ,σn = w. We can choose

representatives αi of the σi so that αi ∩αi+1 = /0 for all i and so that each αi lies
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in minimal position with α0. If we cut S along α0, we obtain a compact surface S′,

some of whose boundary components correspond to α0.

For each i > 1, the representative αi gives a collection of disjoint arcs in S′

and hence a simplex τi of A (S′) (some arcs of αi might be parallel and these get

identified in A (S′)). For i ≥ 3, the collection of arcs is filling, which means that

when we cut S′ along these arcs we obtain a collection of disks and boundary-

parallel annuli, and we say that the corresponding simplex of A (S′) is filling.

Since there is a unique configuration for αn and α0 in minimal position, there

is a unique possibility for τn. As τn ∪ τn−1 is contained in a simplex of the arc

complex of S′ and since τn is filling, there are finitely many possibilities for τn−1

(and we can explicitly list them). This is the key point: there are infinitely many

vertices of C (S) that correspond to any given simplex in the arc complex, but there

are finitely many choices for the simplex itself.

Because τi is filling whenever i ≥ 3, we can continue this process inductively,

and explicitly list all possibilities for τ2. Now, by the definition of a tight multi-

geodesic in C (S), the simplex σ1 is represented by the union of the essential com-

ponents of the boundary of a regular neighborhood of α0 ∪α2. Equivalently, any

such σ1 is given by a regular neighborhood of the union of ∂S′ with a representa-

tive of τ2. Hence there are finitely many (explicitly listable) possibilities for σ1, as

desired.

A bound on the number of candidates. In the introduction we stated that the num-

ber of candidate simplices σ1 produced by Webb’s algorithm when d(v,w) = n is

bounded above by

2(72g+12)min{n−2,21}(26g−6 −1).

We will now explain this bound; we are grateful to Richard Webb for supplying us

with the details.

We can think of the sequence τn, . . . ,τ3 as a path in the filling multi-arc complex,

that is, the simplicial complex whose vertices are simplices of A (S′) whose geo-

metric realizations fill S′ and whose edges correspond to simplices with geometric

intersection number zero. Then we obtain τ2 by extending this path by one more

edge and taking some nonempty subset of the simplex of A (S′) represented by the

endpoint τ̂2 of this extended path.

Webb proved that the degree of an arbitrary vertex of this filling multi-arc com-

plex is bounded above by 272g+12 (this is for the case where we start with a closed

surface of genus g and cut along a single simple closed curve, as above); see his

paper [19]. Our extended path from τn to τ̂n−2 has length n−2 and so this a priori

gives a bound of 2(72g+12)(n−2) for the number of possibilities for τ̂2. However,

there is a version of the bounded geodesic image theorem which tells us that, be-

cause the τi arise from a geodesic in C (S), the actual distance in the filling multi-arc

complex between τn and τ̂2 is bounded above by 21. This gives the first multipli-

cand in the desired bound. The second multiplicand comes from the number of

ways of choosing a nonempty sub-simplex τ2 of τ̂2. The number of vertices of τ2

is bounded above by 6g−6, and so there are 26g−6 −1 ways to choose τ2 from τ̂2.
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