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1. Introduction

This article is about the Brouwer fixed point theorem, the Borsuk–
Ulam theorem, and Poincaré’s theorem about vector fields on the sphere.
We aim to give intuitive, geometric arguments for all three theorems, at
least in dimension two. The main idea we use is to decompose the do-
main into circles, graph the resulting functions in the solid torus, and
then appeal to our intuition about knots and links in 3-space. This
approach was conceived by the first author in 1965. While there are
dozens of proofs of all three theorems in the literature, we hope that
our approach can help shed new light on these theorems and make the
proofs accessible to even broader audiences.

The Brouwer fixed point theorem is one of the most famous theorems
in mathematics. It has a simple statement and a surprising conclusion.
In the statement, Dn is the closed unit ball in Rn.

Brouwer fixed point theorem. If f : Dn → Dn is continuous, then
f has a fixed point; that is, there is a p ∈ Dn with f(p) = p.

This theorem is named for L. E. J. Brouwer, who published a proof
in 1910. Closely related theorems were proved by Henri Poincaré in
1883 and Piers Bohl in 1904; see the survey by Park [2] for more of the
fascinating history of the theorem.

The Brouwer fixed point theorem has profound implications across
mathematics and science. One application is the Nash equilibrium
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theorem from the far-flung field of game theory. Nash’s theorem says
that for any non-cooperative game with a finite number of players and
a finite set of actions, there is a choice of action for all the players so
that no player can improve their position by changing their action only.
A famous special case of this is the prisoner’s dilemma.

A down-to-earth demonstration of Brouwer’s theorem might read as
follows: Take a map of the world on a rectangular piece of paper. Take
a second copy of the map, crumple it (without tearing!) and smush
the crumpled map onto the first map, making sure that each point of
the crumpled map is somewhere above the first map. Then, no matter
what you do, there is at least one point in the crumpled map that is
directly above the corresponding point in the first(!).

The Borsuk–Ulam theorem, a close relative of the Brouwer fixed point
theorem, was proved by Karol Borsuk in 1933. In his paper, Borsuk
credits the formulation of the problem to Stanis law Ulam. Again, the
theorem has a simple statement and a surprising conclusion. In the
statement, Sn is the unit sphere in Rn+1.

Borsuk–Ulam theorem. If f : Sn → Rn is continuous, then there is
a p ∈ Sn with f(p) = f(−p).

Here, the standard down-to-earth demonstration reads: at any given
moment, there is a pair of antipodal points on Earth where both the
temperature and the atmospheric pressure are equal(!).

The Brouwer fixed point theorem can be deduced from the Borsuk–
Ulam theorem; see the article by Francis Su [3]. Of the many other
applications, a particularly famous one is the ham sandwich theorem:
given a sandwich made of bread, ham, and cheese, we can always find
a way to cut the sandwich—with one straight cut of the knife—so that
all three ingredients are cut exactly in half. See the book by Matousek
for much more about the Borsuk–Ulam theorem [1].

Finally, we come to the aforementioned theorem of Poincaré, who
proved the n = 2 case in 1885. The general case was proved by Brouwer
in 1912. This theorem goes by many names; we have chosen an obscure
one. In the statement, a vector field on S2 is a choice, for each p ∈ S2,
a tangent vector to S2 at p.

Can’t-comb-a-coconut theorem. Let n be even. Every continuous
vector field on Sn has a zero.
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We think of a vector field as a way of combing (and trimming) the
hair on a sphere, or, a coconut. The theorem says that there is no way
to do this continuously without trimming one of the hairs completely,
so that it has zero length. As a down-to-earth consequence, there is
always a place on Earth where the wind is not blowing.

It is not too hard to see that Poincaré’s theorem fails for n = 1: at each
point take a unit tangent vector that points in the clockwise direction
(for example). To see why it fails for n = 3, we encourage the reader
to learn about the Hopf fibration of S3.

We now proceed to prove all three theorems using the strategy outlined
at the start. We hope that the proofs appeal to anyone familiar with
the kind of magic trick where linked rings impossibly become unlinked.

2. Brouwer

In the case n = 1, the Brouwer fixed point theorem says that any
continuous f : [0, 1] → [0, 1] has a fixed point. This case follows from
the intermediate value theorem. Indeed, if i : [0, 1] → [0, 1] is the
identity map, and g(x) = f(x) − i(x), then g(0) ≥ 0 and g(1) ≤ 0. By
the intermediate value theorem, there is a point x where g(x) = 0. In
other words, f(x) − i(x) = f(x) − x = 0, or f(x) = x.

We can visualize the argument as follows: since the graph of f must
start (at x = 0) above the graph of the identity function i and must
end (at x = 1) above the graph of i, there must be a point where
the two graphs cross. The crossing point gives the desired fixed point.
We would like to give an argument for the two-dimensional case of the
theorem that capitalizes on the same kind of intuition.
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So, let D2 be the closed unit disk in R2, and let f : D2 → D2 be
continuous. We would like to show that f has a fixed point. In other
words, we want to show that there is a point p in D2 so that f(p) = p.

In the one-dimensional case, our intuition is aided by the fact that we
can see the graphs of f and i, and we can compare them visually. In
higher dimensions, this will not work in the most näıve sense. Indeed,
for the two-dimensional case, the graph of f is a two-dimensional subset
of the four-dimensional space D2 ×D2.

In Edwin Abbott Abbott’s classic novella Flatland, the main character
A Square is led to understand the shape of a higher-dimensional visitor
(a sphere in 3-space) by viewing one slice at a time.

Taking Flatland as inspiration, we can better understand the graph of
f by viewing it one slice at a time. Specifically, we will consider the
restriction of f to the circles of radius r centered at the origin. Let us
denote each such circle by Sr. We thus obtain a one-parameter family
of functions:

{fr : Sr → D2 | 0 < r ≤ 1}.

All of these functions together carry the same information as f itself.
(We could also include the information of f(0), but this is technically
not needed since f is continuous.)

Each Sr can be identified with S1. Therefore, the graph of each fr is
a subset of S1 × D2, the solid torus. As any doughnut or bagel lover
knows, we can embed the solid torus in R3. This allows us to readily
visualize the graphs of the various fr.

What do these graphs in the solid torus look like? To each θ ∈ S1,
there is an associated disk θ × D2 in the solid torus (a bagel chip?).
For a given r, the graph of fr is the set of points (θ, fr(θ)). So on each
slice θ×D2 we see exactly one point of the graph of fr, namely, fr(θ).
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As θ changes continuously, the point fr(θ) moves continuously. In this
way, the graph of fr traces out a closed curve in the solid torus. Since
each slice θ ×D2 is hit exactly once, this curve goes around the torus
exactly once.

Now that we have a way to visualize the graph of f we proceed similarly
to the one-dimensional case: we will “draw” the graph of the identity
map i : D2 → D2, and then argue that the graph of f must cross the
graph of i.

As in our discussion of the n = 1 case, we first want to have a sense
for the graph of the identity map i. We will consider slices ir, defined
analogously to the fr. For very small r, the graph of ir is close to
S1 × {i(0)} = S1 × {0}; this is the so-called core curve of the solid
torus.

Now we consider r = 1. The graph of i1 is the set of points

θ × (1, θ)

where 0 ≤ θ ≤ 2π, and the second coordinate is given in polar coor-
dinates on D2. This is the (1, 1)-curve on the boundary of the solid
torus, so named because it travels once around each S1-factor of this
torus, thought of as S1 × S1.

iϵ

fϵ

i1

f1

Figure 1. The graphs of f and i for small r and for r = 1

We now focus on the graph of our function f . As with the identity, the
graph of fr is close to the curve

S1 × f(0)

for very small r. We may as well assume that f(0) is not 0 (for otherwise
we would have our fixed point!). Therefore, assuming we made r small
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enough, the graphs of fr and ir are disjoint planar circles lying in
parallel planes, as in the left-hand side of Figure 4.

The key point for us is that the graphs of fr and ir are unlinked. That
is, we can pull them away from each other without the curves ever
crossing. Now, suppose we let r increase. The graphs of ir and fr will
change in a continuous way. If we can show that the graphs of i1 and
f1 are linked—as suggested in Figure 4—then it must be the case that
there is an r where ir and fr intersect.

To show that the graphs of i1 and f1 are linked we will deform the
graph of f1—without crossing the graph of i1—in such a way that the
deformed curve is clearly linked with the graph of i1. More specifically,
we will deform the graph of f1 to the core curve of the solid torus. This
core curve is certainly linked with the graph of i1, the (1, 1)-curve on
the boundary of the solid torus.

How do we do this deformation? We may assume that the graph of f1
does not intersect the graph of i1 (otherwise, we would already see a
fixed point!). Still, we don’t know too much about f1. However, we do
know that i1 is a curve on the boundary of the solid torus. Therefore,
on each disk θ × D2, we can push the graph of f1 (which is a single
point in this disk) in a straight line to the center of the disk. Doing
this on each disk all at the same time achieves our goal.

i1
f1

Figure 2. Pushing f1 towards the core curve

The core curve and the (1, 1)-curve are linked. Indeed, there is a disk
in R3 with the core curve as its boundary, and the (1, 1)-curve pierces
this disk in a single point. Counting intersections of curves with disks
is in fact one way to formally define linking numbers. But for the
purposes of this discussion, we hope that your intuition tells you that
these curves are linked. In other words, if they were made of metal,
you could not pull them far apart from each other.
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If two curves are linked, and we deform one (or both) of them in a
continuous way, without introducing any crossings along the way, then
the deformed curves are also linked. It follows that the graphs of f1
and i1 are linked. Going from our very small r to 1, the graphs of ir
and fr go from unlinked to linked. Since there is no magic involved, it
follows that there must be an r where ir and fr intersect. This gives
us the desired fixed point, and the theorem is proved.

3. Borsuk–Ulam

Just like the Brouwer fixed point theorem, the n = 1 case of the
Borsuk–Ulam theorem follows from the intermediate value theorem.
Indeed, let f : S1 → R be a continuous map. Using θ-coordinates on
S1, we define f̄ : S1 → R by f̄(θ) = f(θ+π) (if we use R2-coordinates,
then f̄(p) = f(−p)). We have

f(0) − f̄(0) = −(f(π) − f̄(π))

To simplify, we restrict the domains of both functions to [0, π]. Since
the function f − f̄ changes sign between 0 and π, there must be a θ in
[0, π] where f(θ) − f̄(θ) = 0, or f(θ) = f(θ + π), as desired.

Visually, we see that the graphs of f(θ) and f̄(θ) swap places between
0 and π. For instance, if the graph of f is higher than the graph of f̄
at θ = 0, then the graph of f̄ is higher at θ = π. Somewhere along the
way, they must cross.

We now turn to the case n = 2 of the Borsuk–Ulam theorem. Let
f : S2 → D2 be a continuous function. We again use the auxiliary
function

f̄(p) = f(−p).

To prove the theorem, we must find a point p ∈ S2 where f(p) = f̄(p).
As in the case of the Brouwer fixed point theorem, we will accomplish
this by showing that the graphs must intersect.

Again, to show that the graphs of f and f̄ cross, we will graph the
restrictions of both functions to slices of S2. Here, the slices will be the
latitudes on S2. In astronomical coordinates, a line of latitude on S2 is
described by an angle, namely the angle ϕ between the z-axis and any
line through the origin which intersects the latitude. To specify a point
on a given latitude, an extra coordinate θ is needed. This coordinate
gives the longitude of a point.
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Our slice functions then will be the restrictions to these circles:

{fϕ : S1 → D2 | 0 < ϕ ≤ π/2} {f̄ϕ : S1 → D2 | 0 < ϕ ≤ π/2}
Here S1 is naturally identified with the latitudes via the coordinate θ.
Again, we can graph each of these functions in the solid torus.

For small ϕ, the situation is very similar to that in the proof of the
Brouwer fixed point theorem. Indeed, for such ϕ, the graphs of fϕ and
f̄ϕ resemble the curves

S1 × f(N) and S1 × f(S)

where N and S are the north and south poles of S2.

As before, we can assume these values are distinct, otherwise we would
already see the conclusion of the theorem. In this case the graphs of
fϕ and f̄ϕ are unlinked for the same reason as before. We would like to
show that for some ϕ, the graphs of fϕ and f̄ϕ are linked.

For ϕ = π/2, the map fϕ is the restriction of f to the equator of S2.
Since the equator is fixed under the antipodal map, p 7→ −p, we have
that f̄ϕ is the restriction of f̄ to the equator. We write feq and f̄eq for
these maps.

As the antipodal map acts on the equator by a rotation of π, we can
write:

f̄eq(θ) = feq(θ + π)

where θ is the angular coordinate around the equator. In other words,
the functions f̄eq(θ) and feq(θ) are shifted by a rotation of π in the
domain.

We assume that there is no value of θ where f̄eq(θ) = feq(θ), for other-
wise we would have nothing to show. Thus, for each θ, we can draw a
line segment ℓθ in the disk {θ} ×D2 connecting f̄eq(θ) to feq(θ).

As θ varies from 0 to 2π, the ℓθ changes in a continuous way, and hence
sweeps out a strip in the solid torus. The two edges of this strip are
the graphs of feq and f̄eq. To show that the graphs are linked, we will
aim to understand how this strip is twisted.

Since f̄eq and feq differ by the π-shift in the domain, the line segments
ℓ0 and ℓπ are the same, but with endpoints reversed. Thus, ℓθ rotates
by an angle of kπ, where k is an odd integer, as θ varies from 0 to π.
Again, because of the π-shift, the segment ℓθ again rotates by an angle
of kπ (in the same direction) as θ varies from π to 2π.
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feq(0)

f̄eq(0)

ℓ0

feq(π)

f̄eq(π) ℓπ

Figure 3. feq and f̄eq at θ = 0 and θ = π

θ = 0
θ = π

fθ/2

f̄θ/2

Figure 4. The graphs of feq and f̄eq, connected by line segments

The total rotation of ℓθ between 0 and 2π is then 2kπ, which is nonzero
since k is odd. It follows that the graphs of feq(θ) and f̄eq(θ) are linked.
(To convince yourself of this, take a strip of paper, give one end some
number of full twists, and tape a loop of string to each edge. Then
remove the tape, and check that you cannot pull the strings apart.)

Since fϕ and f̄ϕ go from linked to unlinked as ϕ varies from a very small
positive number to π/2, there must be a point where they intersect,
and this gives the point p where f(p) = f̄(p), or f(p) = f(−p), and
the theorem is proved.

In this argument, we have appealed to the reader’s intuition that if
we take a strip of paper, twist the strip by a nonzero number of full
twists, and then glue the ends, then the two curves on the boundary
are linked. The authors have not seen a magician perform this version
of the linked rings trick, but would encourage such an experiment.
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4. Poincaré

As a final mathematical flourish, we demonstrate how the technique
of slicing and graphing can be used to prove the can’t-comb-a-coconut
theorem. The basic idea of our proof is the same as the previous two: we
restrict the domain to circles and graph (a version of) the restrictions.

Let v be a continuous vector field on S2, that is, a continuous function

v : S2 → R3

with v(p) ⊥ p for all p. We want to find a p in S2 with v(p) = 0. To
simplify our pictures, we will assume that all vectors v(p) have length
at most 1. You can imagine giving your coconut a haircut if you like.

Now, let γ : S1 → S2 be a curve where γ′(θ) is well defined, never zero,
and changes continuously with θ. If you walk along any circle on the
sphere without taking a rest, you are describing such a curve.

For any curve γ on S2 as above, we define a function

fγ(θ) : S1 → D2

as follows: given θ we take the tangent plane to S2 at γ(θ) and rigidly
place it on the xy-plane in R3 so that the outward normal vector to
S2 at fγ(θ) ends up pointing along the positive z-axis and so that γ′(t)
is placed onto the positive x-axis. Then the vector v(γ(θ)) gives us
a point in D2 (remember the haircut!). It is important here that all
vectors are based at the origin.

The function fγ is continuous because γ′ and v are continuous. Its
graph is thus a curve in the solid torus S1 × D2. We are in familiar
territory! As before, the graph of each fγ is a curve that intersects each
slice θ ×D2 in one point.

The core curve of the solid torus corresponds to zero vectors. If our v
wants to not have zeros, the graphs of all the fγ must avoid the core.

Let γ be a small circular loop in S2. For concreteness, we take γ to
be a loop around a line of latitude very close to the north pole, in the
easterly direction. Will describe the graph of fγ in detail.

We may as well assume v is nonzero at the north pole (otherwise we
would be done!). Since v is continuous, we can zoom into the north
pole until the vector field v looks as close to a constant vector field
as we want. Therefore, if we choose γ to be small enough, then the
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N

γ

Figure 5. A continuous vector field near the north pole
N , and a small loop γ

picture will look similar to the one in Figure 5 (in the picture, we have
shifted each v(p) so its base is at p).

For this curve γ, we can describe the graph of fγ very precisely. We can
see from the picture that as we walk around γ, the vector field does one
full turn in the clockwise direction, and the lengths of the vectors stay
approximately constant; say the lengths are approximately R. From
this we conclude that the graph of fγ is very close to the (1, 1)-curve
on the torus obtained by taking the circles of radius R on each disk.

And now (to mix magical metaphors) we pull an ace out of our sleeve:

the curve γ can be continuously deformed to its reverse

(and moreover we can do this in such a way that each intermediate
curve has constant speed). To do this we stretch and pull γ so that it is
deformed to the Tropic of Cancer, the equator, the Tropic of Capricorn
and then to a small loop around the south pole. Then, keeping the
loop small, we move it up along a longitude and over the north pole,
back to its original position. At the end, we obtain γ̄, the reverse of γ,
given by the formula γ̄(θ) = γ(−θ).

Now for the finishing touch. The graph of fγ̄ is the (1,−1)-curve on
the same torus of radius R; this is like the (1, 1)-curve, but as we
travel around the first factor of the torus S1×S1, we travel around the
second factor in the opposite direction from before. But we deformed
continuously from γ to γ̄, which means the graphs deform continuously.
For the same reason that it is impossible to take two linked metal rings
and to flip one over without moving the other, we know there must
be a moment during the deformation where the graph crosses the core
curve. As above, this means that v has a zero right there. Ta da!
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