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Abstract. A closed Teichmüller geodesic in the moduli space Mg

of Riemann surfaces of genus g is called L-short if it has length at
most L/g. We show that for any L > 0 there exist R > ǫ > 0,
independent of g, so that the L-short geodesics in Mg all lie in
the intersection of the ǫ-thick part and the R-thin part. We also
estimate the number of L-short geodesics in Mg, bounding this
from above and below by polynomials in g whose degrees depend
on L and tend to infinity as L does.

1. Introduction

Given g ≥ 1, let Mg denote the moduli space of Riemann surfaces
of genus g equipped with the Teichmüller metric. For any L > 0, we
define

Gg(L) = {closed geodesics in Mg of length at most L/g}.
We refer to the elements of Gg(L) as L-short geodesics, or short geodesics
for short.

Ivanov [19] and Arnoux–Yoccoz [6] showed that the set Gg(L) is finite
for every g ≥ 1 and L > 0. Penner [29] proved that there exists an L0

so that Gg(L) is nonempty for all g ≥ 1 and L > L0; see Section 4.

Locating short geodesics. Given an interval I ⊂ (0,∞), let Mg,I be
the subset of Mg consisting of those hyperbolic surfaces (Euclidean
surfaces in the case g = 1) in which the length of the shortest essential
closed curve lies in I. For example, the sets Mg,(0,R] and Mg,[ǫ,∞) are
often called the R-thin part and ǫ-thick part of Mg, respectively. Our
first theorem provides a description of the location of the set of short
geodesics in Mg in these terms.

Theorem 1.1. Let L > 0. There exists R > ǫ > 0 so that, for each
g ≥ 1, each element of Gg(L) lies in Mg,[ǫ,R].
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We emphasize that the constants R and ǫ in this theorem are inde-
pendent of g. Otherwise the existence of R and ǫ would simply follow
from the fact that each Gg(L) is finite.

The existence of ǫ in Theorem 1.1 is originally due to Veech [35],
and it is essentially independent of the rest of the paper. Although the
argument has appeared explicitly (see [35] and [10]), and is implicit
in Bers’ proof of Thurston’s classification of mapping classes [8], we
give the proof in Section 9 for completeness. The argument follows
the well-known theme in hyperbolic geometry of short geodesics; see
McMullen’s paper [26] for a broad discussion of this idea.

The existence of R in Theorem 1.1 is much more subtle, and cru-
cially relies on the assumption that, as we increase g, the lengths of
the geodesics under consideration converge to zero at the rate of 1/g.
Indeed, Proposition 9.3 provides a striking counterbalance to Theo-
rem 1.1. There, we show that if we take geodesics γg whose lengths
tend to zero, but do not tend to zero quickly enough, then, not only
might the geodesics not lie in some uniformly thin part of moduli space,
but they might all be contained in some arbitrarily thick part of moduli
space.

Counting short geodesics. Our second and third theorems concern the
number of short geodesics in Mg, counted as a function of g: the num-
ber of L-short geodesics in Mg is bounded from above and below by
polynomials in g whose degrees depend on L and tend to infinity as L
does.

Theorem 1.2. Given L > 0 there exists a polynomial PL(g) so that

|Gg(L)| ≤ PL(g)

for all g ≥ 1.

Theorem 1.3. Given d > 0, there exists a polynomial Qd(g) of degree
d, with positive leading coefficient, and L > 0 so that

|Gg(L)| ≥ Qd(g)

for all g ≥ 1.

The estimates given in Theorems 1.2 and 1.3 are novel in the sense
that we consider the asymptotics with respect to g. Previous results
on the subject have focused on the case where g is fixed and L tends
to infinity.
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Veech was the first to study the asymptotic behavior of |Gg(L)| as L
tends to infinity [35]. His line of work eventually culminated in Eskin–
Mirzakhani’s asymptotic formula [10], which gives

|Gg(L)| ∼ e(6g−6)(L/g)

(6g − 6)(L/g)

as L→ ∞. The techniques used in their proof are of a more dynamical
nature than ours. In particular, their arguments take advantage of
properties of the geodesic flow on moduli space [25, 34, 7, 14], drawing
inspiration from work of Margulis [23].

The Eskin–Mirzakhani formula has been generalized to other strata
of moduli space by Eskin–Mirzakhani–Rafi [11] and also by Hamenstädt
[17]. A key step in each of these works is to understand the location in
moduli space of most geodesics, in particular to estimate the number
of geodesics disjoint from a given compact set.

Short geodesics as small-dilatation pseudo-Anosov mapping classes. Let
Sg denote a closed, connected, orientable surface of genus g. We will
now give an interpretation of Gg(L) that is intrinsic to Sg. For more
details on pseudo-Anosov homeomorphisms, the mapping class group,
and Teichmüller space, see [13].

A homeomorphism φ : Sg → Sg is pseudo-Anosov if there are mea-
sured singular foliations (F+, µ+) and (F−, µ−), called the stable and
unstable measured foliations, and a real number λ(φ) > 1, called the
dilatation, so that

φ(F+, µ+) = λ(φ)(F+, µ+) and φ(F−) = λ(φ)−1(F−, µ−).

When g = 1, the foliations F+ and F− are nonsingular, and φ is usu-
ally called Anosov. For ease of exposition, we will consider Anosov
homeomorphisms to also be pseudo-Ansoov.

The mapping class group Mod(Sg) is the group of homotopy classes
of homeomorphisms of Sg. An element of Mod(Sg) is pseudo-Anosov
if it has a pseudo-Anosov representative.

There is a natural action of Mod(Sg) on Teichmüller space Teich(Sg),
the space of isotopy classes of hyperbolic metrics (or complex struc-
tures) on Sg, and the quotient is nothing other than moduli space:

Mg = Teich(Sg)/Mod(Sg).

The Teichmüller distance between two points of Teich(Sg) is log(K)/2,
where K is the quasiconformal distortion between the two correspond-
ing metrics on Sg, minimized over all representatives of the respective
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isotopy classes. The group Mod(Sg) acts on Teich(Sg) properly discon-
tinuously by isometries, and so there is an induced metric on Mg, as
above.

Each pseudo-Anosov [φ] in Mod(Sg) acts on Teich(Sg) by transla-
tion along a geodesic axis. The translation length of [φ] is precisely
log(λ(φ)) and the axis descends to a closed geodesic γφ in Mg of length
log(λ(φ)). Furthermore, conjugate pseudo-Anosov mapping classes de-
fine the same closed geodesic, and, moreover, every closed geodesic in
Mg arises in this way.

We define the set of small dilatation pseudo-Anosov mapping classes
in Mod(Sg) as

Ψg(L) = {[φ] ∈ Mod(Sg) | φ is pseudo-Anosov and log(λ(φ)) ≤ L/g}.
By the previous paragraph, there is a bijection between Gg(L) and
Ψg(L)/Mod(Sg), the set of Mod(Sg)-conjugacy classes of elements of
Ψg(L):

Gg(L) ↔ Ψg(L)/Mod(Sg).

As such, our theorems can be rephrased as statements about pseudo-
Anosov homeomorphisms.

Small dilatations and 3-manifolds. Theorems 1.1 and 1.2 will be de-
duced from a finiteness result proven by the authors with Benson Farb,
which we now recall. Consider the set of all small dilatation pseudo-
Anosov mapping classes of all closed surfaces:

Ψ(L) =
⋃

g≥1

Ψg(L).

For each element of Ψ(L), we define a new pseudo-Anosov homeomor-
phism by removing the singularities of the stable and unstable folia-
tions and taking the restriction. Let T(L) denote the set of mapping
tori that arise from these modified pseudo-Anosov maps, considered up
to homeomorphism.

We have the following theorem; see [12, Theorem 1.1] and [2, Theo-
rem 6.2].

Theorem 1.4. For all L > 0, the set T(L) is finite.

Because of Theorem 1.4, it is enough to prove Theorems 1.1 and 1.2
for the pseudo-Anosov homeomorphisms corresponding to a single el-
ement of T(L). We may then take maxima and minima of all of the
resulting bounds in order to obtain the theorems.
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2. The Thurston norm

Theorem 1.4 allows us to realize Gg(L) as the union of a finite number
of sets, namely, the short geodesics arising from the different fibers of
the finite set of 3-manifolds T(L). In order to leverage this theorem
effectively, we will need a way of organizing the elements of Gg(L)
coming from a particular 3-manifold M of T(L). The Thurston norm
on H1(M ; R) is well-suited to this purpose.

Let M ∈ T(L). By definition, M is equal to the mapping torus Mφ,
where φ : S → S is a pseudo-Anosov homeomorphism of a punctured
surface S:

Mφ = S × [0, 1]/((φ(x), 0) ∼ (x, 1)).

We refer to the surface S ⊂ M as a fiber, since it is a fiber in a
fibration of M over the circle. A deep theorem of Thurston states that
the mapping torus of any pseudo-Anosov homeomorphism, hence M ,
admits a finite-volume hyperbolic structure [28]. In this section, we
will only use the observation that M is atoroidal.

Fibers of M represent elements of H1(M ; R). More precisely, each
fiber in a fibration of M over S1 determines and is determined up
to isotopy by a homology class which is Poincaré dual to an integral
element of H1(M ; R). Furthermore, connected fibers correspond to
primitive integral elements of H1(M ; R) . In this way, we identify
the set of isotopy classes of fibers in M with a subset of the integral
elements of H1(M ; R).

Let M be any finite-volume hyperbolic 3-manifold. Thurston [32]
defined a norm

‖ · ‖ : H1(M ; R) → R,

now called the Thurston norm, and proved that the set of all fibers of
the mapping torus Mφ has a convenient description in terms of || · ||.
We summarize the properties of the Thurston norm in the following
theorem.

Theorem 2.1. Suppose M is a finite-volume hyperbolic 3-manifold.

• The unit ball in H1(M ; R) with respect to the Thurston norm
is a compact polyhedron B.
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• There is a set of open top-dimensional faces F1, . . . , Fn of B so
that the fibers of M exactly correspond to the integral elements
of the union of the open cones R+ · Fi.

• The restriction of ‖·‖ to any cone R+ ·Fi is equal to the restric-
tion of a homomorphism ψi : H1(M ; R) → R with the property
that ψi(H

1(M ; Z)) ⊆ 2Z.
• If S is a fiber, then ‖S‖ = −χ(S).

The open faces F1, . . . , Fn in Theorem 2.1 are called the fibered faces
of M . We will often abuse notation by writing S ∈ R+ · Fi to mean
that the cohomology class dual to the fiber S lies in the cone over the
fibered face Fi.

The homomorphisms ψi can be described as follows [32, Theorem 3].
Given a fiber S ∈ R+ ·Fi, the union of all fibers of the fibration defines
a codimension 1 foliation of M . The tangent spaces to the leaves form
a 2-plane bundle τi on M , whose homotopy class only depends on Fi.
The relative Euler class e(τi), relative to the inward-pointing vector
in a neighborhood of each cusp, is dual to an element of H1(M ; R)
which, by pairing with H1(M ; R), defines a homomorphism to R. This
is precisely −ψi:

ψi(η) = −e(τi) · η
for all η ∈ H1(M ; R).

3. Counting short geodesics I

We now apply Theorems 1.4 and 2.1 in order to prove Theorem 1.2,
which states that given L > 0 there exists a polynomial PL(g) so that

|Gg(L)| ≤ PL(g)

for all g ≥ 1.

Proof of Theorem 1.2. Recall from the introduction that

|Ψg(L)/Mod(Sg)| = |Gg(L)|.

Thus, given L > 0, it suffices find a polynomial PL(g) so that

|Ψg(L)/Mod(Sg)| ≤ PL(g)

for all g.
According to Theorem 1.4, the set of 3-manifolds T(L) is finite. For

any M ∈ T(L), let b1(M) = dim(H1(M ; R)) be the first Betti number
of M .
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Let B(r) denote the closed ball of radius r around 0 in H1(M ; R)
with respect to the Thurston norm. There is a polynomial pM(r) of
degree b1(M) so that

|H1(M ; Z) ∩B(r)| ≤ pM(r).

Let (φ : S → S) ∈ Ψg(L). By the Poincaré–Hopf index theorem,
the number of singular points of the stable foliation for φ is at most
4g − 4. Thus, if S ′ denotes the surface obtained from S by deleting
these singular points, we have

|χ(S ′)| ≤ 6g − 6.

Let φ′ : S ′ → S ′ denote the restriction of φ to S ′. The map φ is
completely determined up to conjugacy by the conjugacy class of φ′, so
it suffices to count the number of conjugacy classes of maps φ′ arising
from elements of Ψg(L). By the last statement of Theorem 2.1, we
have

‖S ′‖ ≤ 6g − 6.

In other words, each φ ∈ Ψg(L) is, after deleting singular points, the
monodromy of some fiber in the ball of radius 6g − 6 with respect to
the Thurston norm of some M ∈ T(L). Thus, setting

PL(g) =
∑

M∈T(L)

pM(6g − 6),

it follows that
|Ψg(L)/Mod(Sg)| ≤ PL(g),

as desired. �

4. Two theorems of Fried about fibered faces

Let φ : S → S be a pseudo-Anosov homeomorphism. The suspension
flow φt determined by S and φ is a flow on Mφ defined using the
coordinates

Mφ = S × [0, 1]/(x, 1) ∼ (φ(x), 0),

and extending the local flow (x, s) 7→ (x, s + t) on S × [0, 1] to Mφ. If
b1(Mφ) ≥ 2, then by Theorem 2.1 Mφ fibers in infinitely many ways
and we obtain infinitely many different suspension flows on Mφ.

We note that φt is transverse to S and the first return map to S
is precisely the monodromy φ. The (unmeasured) stable and unstable
foliations F± for φ can therefore be suspended. The result is a pair of
φt-invariant singular foliations on M which we denote FM

± .
Fried [16, Theorem 7 and Lemma] proved that the monodromy of

any other fiber in R+ · F , the cone containing S, has the following
description (see also [22]).
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Theorem 4.1. Let φ : S → S be a pseudo-Anosov homeomorphism
with stable and unstable foliations F±. Let φt denote the suspension
flow on Mφ determined by S and φ, and let FM

± denote the φt-suspensions
of F±. Let F be the fibered face of Mφ with S ∈ R+ · F . Then for any
fiber Σ ∈ R+ · F , we can modify Σ by isotopy so that

(1) the fiber Σ is transverse to φt and the first return map Σ → Σ
is precisely the pseudo-Anosov monodromy φΣ associated to Σ,
and

(2) the intersections FM
+ ∩Σ and FM

− ∩Σ are the stable and unstable
foliations for φΣ, respectively.

In Theorem 4.1, the foliations FM
+ and FM

− are only topological foli-
ations of Mφ, and not transversely measured foliations. In particular,
the intersections FM

+ ∩ Σ and FM
− ∩ Σ are only the topological stable

and unstable foliations for a fiber Σ, and not the transversely measured
foliations. We will return to this issue in Section 6.

Fried also proved the following essential theorem; see [15, Theorem
F] and [27, Section 5].

Theorem 4.2. Let M be a finite-volume hyperbolic 3-manifold. For
each fibered face F of M , there exists a continuous function

ΛF : R+ · F → [1,∞)

with the following properties:

• For every η ∈ R+ · F and every t > 0, we have

ΛF (tη) = ΛF (η)1/t.

• For any fiber S ∈ R+ · F with monodromy φ, we have:

ΛF (S) = λ(φ).

• For any sequence {ηi} ⊂ R+ · F with a nonzero limit outside
the open cone R+ · F , we have

ΛF (ηi) → ∞.

McMullen’s proof of Penner’s theorem. As observed by McMullen [27],
Theorem 4.2 can be used to prove Penner’s theorem that there is an L0

so that Gg(L0) (equivalently, Ψg(L0)) is nonempty for all g ≥ 1. To see
this, let φ : S2 → S2 be a pseudo-Anosov homeomorphism whose action
on H1(S2; R) fixes a nontrivial element and consider the mapping torus
Mφ. Because φ has a nonzero fixed vector, we have b1(Mφ) ≥ 2. Let F
be the fibered face of Mφ with S2 ∈ R+ · F .
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Recall from Theorem 2.1 that the restriction of the Thurston norm
to the cone over F is given by the restriction of a homomorphism ψ :
H1(Mφ; R) → R with ψ(H1(Mφ; Z)) ⊆ 2Z. Since every integral class
has even norm, and ψ(S2) = ||S2|| = 2, we have ψ(H1(Mφ; Z)) = 2Z.
Let Σ ∈ H1(Mφ; Z) be an element of the kernel of ψ which, together
with S2, is part of a basis for H1(Mφ; Z). For large g, say g ≥ g0, the
primitive cohomology class

Σg = (g − 1) · S2 + Σ

lies in the cone R+·F . Also, applying the last statement of Theorem 2.1,
we have

‖Σg‖ = ψ(Σg) = ψ((g−1)·S2+Σ) = (g−1)ψ(S2) = (g−1)‖S2‖ = 2g−2.

As Mφ is closed, each fiber Σg is a closed surface. Moreover, since each
Σg represents a primitive cohomology class, it is a connected surface.
Since ‖Σg‖ = 2g− 2, it follows from Theorem 2.1 that Σg has genus g.

According to Theorems 2.1 and 4.2, the function

η 7→ ‖η‖ log(ΛF (η))

is continuous on R+ · F and is constant on rays from the origin. Fur-
thermore, for every g ≥ g0, we have

‖Σg‖ log(ΛF (Sg)) = (2g − 2) log(λ(φg)),

where φg : Σg → Σg is the monodromy.
The rays through the Σg limit to the ray through S2. Thus, by the

previous paragraph,

(2g − 2) log(λ(φg)) → 2 log(λ(φ)) <∞.

It follows that (2g− 2) log(λ(φg)) is bounded from above by some con-
stant L0, independent of g, and thus log(λ(φg)) < L0/g for all g ≥ g0.
By increasing L0 if necessary, we can accommodate the genera g < g0,
and Penner’s theorem follows.

By investigating the monodromies of specific finite-volume fibered
hyperbolic 3-manifolds, Hironaka [18], Aaber–Dunfield [1], and Kin–
Takasawa [21] showed that if L > log((3 +

√
5)/2), then Gg(L) is

nonempty for all sufficiently large g.

5. Counting short geodesics II

In this section we prove Theorem 1.3, which states that, given d >
0, there exists a polynomial Qd(g) of degree d, with positive leading
coefficient, and L > 0 so that

|Gg(L)| ≥ Qd(g)
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for all g ≥ 1.
First, we require a lemma.

Lemma 5.1. For any g ≥ 2, there exists a pseudo-Anosov homeo-
morphism φ : Sg → Sg that acts trivially on H1(Sg; R) and has the
following property: if R+ · F ⊂ H1(M ; R) is the cone on the fibered
face containing Sg, and ψ : H1(Mφ; R) → R is the homomorphism that
restricts to the Thurston norm on R+ · F , then ψ(H1(M ; Z)) = 2Z.

Proof. Assume first that g ≥ 6, and let

α0, . . . , αm, β0, . . . , βn, γ

be the simple closed curves in Sg shown here for the case g = 8:

γ

β0

α0

α1

β1
α2 β2

α3

β3

α4

β4

(when g is odd, m = (g + 1)/2 and n = (g − 1)/2, and when g is even,
m = n = g/2).

Consider the product of Dehn twists:

φ = (T−1
β0
Tα0

)(Tα1
Tα2

· · ·Tαm
)(T−1

β1
T−1

β2
· · ·T−1

βn
).

By Thurston’s theorem [33, Theorem 7], the conjugate Tβ0
φT−1

β0
is iso-

topic to a pseudo-Anosov homeomorphism (see also [30]), hence φ is.
The action of φ on H1(Sg; R) is trivial. Indeed, since each αi and βi

is separating in Sg for i > 0, each of these Tαi
and Tβi

acts trivially on
H1(Sg; R). Also, since α0 and β0 can be oriented so that they represent
the same element of H1(Sg; Z), the twists Tα0

and Tβ0
have the same

action on H1(Sg; R).
We will require one further property of φ, which is that γ and φ(γ)

cobound an embedded genus 1 surface Σ0 in Sg. To check this, note
that φ(γ) = T−1

β0
Tα0

(γ).
We can construct similar configurations of curves, and hence a similar

φ, when g is 3, 4, or 5. Indeed, for g = 3, we can simply use the curves
α0, β0, α1, and β1. The cases of g = 4 and g = 5 require nontrivial
modifications. However, since these cases are not logically needed for
the proof of Theorem 1.3, we leave the constructions to the reader. For
the last case, g = 2, any pseudo-Anosov φ acting trivially on H1(S2; Z)
suffices.
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The surface Σ0 ⊂ Sg ⊂Mφ = M is transverse to the suspension flow
φt on M since Sg is. We can push Σ0 along flow lines to construct a
closed embedded surface of genus 2 transverse to φt as follows (compare
[9], for example). Let N(γ) ⊂ Σ0 be a collar neighborhood of the
boundary component γ. Let η : Σ0 → [0, 1] be a smooth function
supported on N(γ), where η−1(1) = γ, and where the derivative of η
vanishes on γ. Define f : Σ0 → Mφ by f(x) = φη(x)(x). The map f is
an embedding on the interior of Σ0 and has f(γ) = φ(γ). The image
is a closed genus 2 surface Σ which is transverse to φt.

Let τ denote the 2-plane bundle onM defined by the tangent space to
the fibers of the fibration M → S1, and let e(τ) denote its Euler class.
The restriction of τ to Σ is homotopic to the tangent plane bundle,
and hence by Theorem 2.1 we have ψ([Σ]) = −e(τ) · [Σ] = −χ(Σ) = 2.
Since ψ is a homomorphism, its image contains 2Z as desired. �

Proof of Theorem 1.3. Without loss of generality, suppose d ≥ 4 is
even. Let S be a closed surface of genus d/2, let φ : S → S be a
pseudo-Anosov homeomorphism as in Lemma 5.1, and set M = Mφ.
Since φ acts trivially on H1(S; R), we have b1(M) = d + 1. Let F be
the fibered face of M with S ∈ R+ · F and let ψ : H1(M ; R) → R be
the homomorphism agreeing with the Thurston norm on R+ · F . By
Lemma 5.1, we have ψ(H1(M ; Z)) = 2Z.

Any choice of basis forH1(M ; Z) determines an isomorphismH1(M ; Z) ∼=
Z

d+1 which extends to an isomorphism H1(M ; R) ∼= R
d+1. We choose

a basis for H1(M ; Z) so that, with respect to this isomorphism, ψ is
given by

ψ(x0, . . . , xd) = 2x0

It follows that the face F is contained in the hyperplane x0 = 1/2.
Let K be a closed d-cube in F . If K is centered at (1/2, t1, . . . , td)

and has side length 2r, then

K = {(1/2, x1, . . . , xd) ∈ R
d+1 | max

j=1,...,d
|xj − tj| ≤ r}.

Since K is compact, the function ΛF from Theorem 4.2 attains a max-
imum C on K. As ‖ · ‖ log(ΛF (·)) is constant on rays (Theorems 2.1
and 4.2), the function ‖ ·‖ log(ΛF (·)) restricted to R+ ·K also has some
maximum L. Thus, the monodromy of every primitive integral point
in R+ ·K is an element of Ψ(L), and so corresponds to an element of
∪gGg(L).

Now, given g ≥ 2, the set

Ωg = {v ∈ Z
d+1 ∩ (2g − 2) ·K | v primitive}
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determines a set of fibers of M with monodromies defining geodesics
in Gg(L). Two different fibers may define the same geodesic in Gg(L),
but only if the monodromies are conjugate. In this case there is a
self-homeomorphism of M that sends one fiber to the other. Such a
homeomorphism induces an nontrivial isometry of the Thurston norm
on H1(M ; R). Since the unit ball is a polyhedron, this symmetry group
is finite of some order N (compare [32, Corollary of Theorem 1]), and
so the map from Ωg to Gg(L) is at most N to 1.

It remains to show that |Ωg| is bounded from below by a degree d
polynomial with positive leading coefficient. This is a standard count-
ing argument (cf. [5, Theorem 3.9]), and so we content ourselves to
explain the idea. Before we begin, we notice that it is enough to check
this for large g; the statement for arbitrary g is then obtained by sub-
tracting a constant from the polynomial.

We can explicitly describe the d-cube (2g − 2) ·K as:

(2g−2)·K =

{
(g − 1, n1, . . . , nd) | max

j=1,...,d
|nj − (2g − 2)tj| ≤ (2g − 2)r

}
.

For g large enough, the number of integral points in this cube is ap-
proximately ((4g − 4)r)d.

If an integral vector (g−1, n1, . . . , nd) ∈ (2g−2) ·K is imprimitive, it
must be divisible by one of the prime factors p of g−1, and hence must
be the pth multiple of an integral point in the d-cube (2g − 2)/p ·K,
which, for large g, contains approximately

(
(4g − 4)r

p

)d

integral points. Now, if p1, . . . , pm are the prime divisors of g − 1, it
follows that

|Ωg| ∼ ((4g − 4)r)d −
m∑

i=i

(
(4g − 4)r

pi

)d

= ((4g − 4)r)d

(
1 −

m∑

i=i

1

pd
i

)

≥ ((4g − 4)r)d

(
1 −

∞∑

n=i

1

nd

)

= C((4g − 4)r)d.

Since d ≥ 4, we have C > 0, and we are done. �



SHORT GEODESICS IN MODULI SPACE 13

6. Comparing quadratic differentials

Let M be a finite-volume hyperbolic 3-manifold, and let F be a
fibered face. To prove Theorem 1.1 we will need to see how the 3-
manifold M influences the geometry of the surfaces lying over the axis
in Teich(S) for the monodromy φ of a fiber S ∈ R+ · F . We will need
uniform control on the geometry of these surfaces as we vary the fibers.

Each monodromy of M acts on the corresponding Teichmüller space
by translation along an axis. Each such axis is defined by a quadratic
differential on some Riemann surface. The goal of this section is to
describe a construction of McMullen [27] that provides a bridge between
the 3-manifold M and the quadratic differentials corresponding to its
various fibers.

Let Γ = π1(M) and Γ0 ⊳ Γ be the kernel of the map to the abelian-
ization modulo torsion:

1 → Γ0 → π1(M) → H1(M ; Z)/torsion → 1.

Let M̃ → M denote the cover of M associated to Γ0. Let S ∈ R+ · F
be a connected fiber with monodromy φ : S → S. The fibration
S →M → S1 lifts to a fibration over the universal covering R → S1:

S̃ //

��

M̃
//

��

R

��

S // M // S1

The fiber S̃ is a connected cover of S—in fact, it is precisely the cover
corresponding to the φ-invariant subspace of H1(S; Z).

Let φ̃t denote the lift to M̃ of the suspension flow on M associated
to φ. There is a product structure

M̃ ∼= S̃ × R;

indeed, the map (x, t) 7→ φ̃t(x) gives a homeomorphism S̃ × R → M̃ .

Pulling back the foliations F± produces foliations F̃± on S̃, and we

can suspend these by φ̃t to produce foliations F̃M
± on M̃ . Alternatively,

F̃M
± is obtained by pulling back FM

± to M̃ .

Let π : M̃ → S̃ denote the map obtained by collapsing each flow line

of φ̃t to a point:

π(φ̃t(x)) = x.

Let Σ be a fiber in R+ · F . By Theorem 4.1, we can assume that Σ

is transverse to φt. Next, let Σ̃ be one component of the preimage of

Σ in M̃ . The first return map of φt is the monodromy φΣ : Σ → Σ,
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and from this one can show that π|eΣ : Σ̃ → S̃ is a homeomorphism;
see [9, Corollary 3.4]. Since the stable and unstable foliations for φΣ

are obtained by intersecting Σ with FM
± , it follows that π|eΣ sends the

leaves of the lifts of the stable and unstable foliations on Σ̃ to those on
S̃. That is, for every connected fiber Σ ∈ R+ · F , we have identified

the cover Σ̃ homeomorphically with a fixed connected covering S̃ of S.

Further, the foliations F̃± in S̃ pull back to the preimages in Σ̃ of the
stable and unstable foliations for φΣ.

The monodromy φΣ for Σ does determine a pair of transverse mea-
sures µ±(Σ) (unique up to scaling) on the stable and unstable foliations,
respectively. This defines a complex structure on Σ and a holomorphic
quadratic differential q(Σ) for which the vertical and horizontal mea-
sured foliations are µ±(Σ), respectively. Furthermore, q(Σ) defines the

axis for ϕ on Teichmüller space Teich(Σ). Pulling q(Σ) back to S̃ via
(π|eΣ)−1, we have a complex structure and holomorphic quadratic dif-

ferential we denote q̃(Σ) on S̃ whose vertical and horizontal foliations

are precisely (F̃±, µ̃±(Σ)), where µ̃±(Σ) are the measures µ±(Σ) pulled

back to S̃.
McMullen extends this construction of a complex structure and qua-

dratic differential in a continuous way to every point of R+ · F , not

just the fibers [27]. More precisely, let Q(S̃, F̃±) denote the set of pairs

consisting of a complex structure on S̃ together with a holomorphic
quadratic differential for which the horizontal and vertical foliations

are F̃±. We denote a point of Q(S̃, F̃±) by q̃, suppressing the complex

structure in the notation. An element q̃ ∈ Q(S̃, F̃±) determines a Eu-

clidean cone metric for which the leaves of F̃± are geodesics (with the

leaves of F̃+ orthogonal to those of F̃−), and by an abuse of notation

we denote this metric q̃. We topologize Q(S̃, F̃±) with the topology of
locally uniform convergence of these metrics. Specifically, a sequence

{qn} ⊂ Q(S̃) converges to q ∈ Q(S̃) if for any compact set K ⊂ S̃,
qn : K ×K → R converges uniformly to q : K ×K → R.

The main consequence of McMullen’s work that we will need is the
following.

Theorem 6.1. There is a continuous map q̃ : R+ · F → Q(S̃, F̃±)
which is constant on rays, and has the property that for every fiber
Σ ∈ R+ · F , q̃(Σ) = q̃(Σ), up to scaling and Teichmüller deformation.

The map q̃ is given in [27, Theorem 9.3], though it is only defined up
to scaling and Teichmüller deformation, and so one must make some
choices to obtain a well-defined map. This can be done, for example,
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by choosing a rectangle with sides in F̃±, and then for any η ∈ R+ · F ,
we normalize the quadratic differential q̃(η) by requiring that the side
lengths are both 1. Continuity follows from the description of q̃ in
terms of train tracks: the horizontal and vertical foliations are carried
by train tracks τ̃± on S̃, and the weights on the branches determined
by the vertical and horizontal foliations for q̃ are given by eigenvectors
of a continuously varying family of Perron–Frobenius matrices and ap-
propriate equivariance conditions; see the proof of [27, Theorem 8.1].
(Our normalization convention can be chosen to correspond to a nor-
malization in the Perron–Frobenius eigenvectors). Since the charts for
the Euclidean metric are obtained by integrating these two measures,
and since the measures vary continuously, so do the metrics.

7. Dehn filling

Let M be a finite-volume cusped hyperbolic 3-manifold with r cusps.

Let M̂ denote the manifold obtained by removing the interiors of the

cusps, so that M̂ is a compact manifold with r boundary components

∂1M̂, . . . , ∂rM̂ , each homeomorphic to a torus.

A slope on ∂iM̂ is either the isotopy class of an unoriented essential

simple closed curve in ∂iM̂ or ∞. If we choose a basis for π1(∂iM̂) ∼=
Z

2, then a slope βi 6= ∞ corresponds to a coprime pair of integers
βi = (pi, qi), unique up to sign.

Suppose β = (β1, . . . , βr) is a choice of slopes in ∂1M̂, . . . , ∂rM̂ ,
respectively. The β-Dehn filling of M is the 3-manifold M(β) obtained

from M̂ by the following procedure:

• For each i with βi 6= ∞, we glue a solid torus S1 ×D2 to ∂iM̂
so that the curve {∗} × ∂D2 represents βi.

• For each i with βi = ∞, we reglue the original cusp (or, what
is the same thing, we can leave that cusp alone from the start).

The homeomorphism type of M(β) depends only on β.

We can view the set of slopes on ∂iM̂ as points in Z
2 ∪ {∞} ⊂

R
2 ∪ {∞} ∼= S2. We say that a sequence of slopes {βn

i }∞n=1 on ∂iM̂
tends to ∞ if it does in R

2 ∪ {∞}.
The inclusion M̂ → M induces an isomorphism π1(M) ∼= π1(M̂).

If we compose this isomorphism with the homomorphism π1(M̂) →
π1(M(β)) induced by inclusion, we obtain a canonical homomorphism
π1(M) → π1(M(β)). By Van Kampen’s theorem, this is surjective.
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The next result, Thurston’s Dehn surgery theorem [31, Theorem
5.8.2], states that Dehn filling on a hyperbolic 3-manifold usually pro-
duces a hyperbolic 3-manifold.

Theorem 7.1. Let M be a finite-volume hyperbolic 3-manifold with r
cusps. Suppose {βn}∞n=1 is a sequence of k-tuples of slopes with βn =

(βn
1 , . . . , β

n
r ) and βn

i a slope on ∂iM̂ for all i and n. Assume that for all
i, βn

i tends to ∞. Then M(βn) is hyperbolic for all but finitely many
n.

Moreover, for appropriate choices of the holonomy homomorphisms
π1(M), π1(M(βn)) → PSL2(C) within the respective conjugacy classes,
the composition

π1(M) → π1(M(βn)) → PSL2(C)

converges pointwise to

π1(M) → PSL2(C).

We will require the following simple application of Theorem 7.1.

Corollary 7.2. Let M be a finite-volume hyperbolic 3-manifold with
r cusps and let α ∈ π1(M) be any nontrivial element. For each i =

1, . . . , r, there are finitely many slopes β1
i , . . . , β

si

i on ∂iM̂ , βj
i 6= ∞

for all j, so that if β1, . . . , βr are slopes with βi 6= βj
i for each i =

1, . . . , r and j = 1, . . . , si, then α represents a nontrivial element of
π1(M(β1, . . . , βr)).

8. Lengths of curves

In this section we recall three notions of length for a simple closed
curve in a surface S equipped with a complex (or hyperbolic) structure
X ∈ Teich(S), and we recall various well-known relationships between
them. Here, and throughout, we say that a simple closed curve is
essential if it is homotopic neither to a point nor a puncture. For
further details, see [3, 4, 24, 36].

Extremal length. A Borel metric on S with respect to X is a metric
that is locally given by ρ(z)|dz|, where ρ ≥ 0 is a Borel measurable
function and z is a local coordinate for the complex structure X.

Let α be a simple closed curve in S. The extremal length of α with
respect to X is

extX(α) = sup
ρ

Lρ(α)2

Area(ρ)
,
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where the supremum is over all Borel metrics ρ in the conformal class of
X, Lρ(α) is the infimum of ρ-lengths of closed curves in the homotopy
class of α, and Area(ρ) is the area of S with respect to ρ.

Modulus. Another number associated to α with respect to X is the
modulus. Recall that if an annulus A is conformally equivalent to
{z ∈ C : 1 < |z| < R}, then the modulus of A is mX(A) = log(R)/2π.
The modulus of a simple closed curve α is defined as

mX(α) = sup
A⊃α

mX(A),

where the supremum is taken over all embedded annuli in S containing
a curve homotopic to α. When α is inessential, then mX(α) = ∞.

We can alternatively define the modulus of A via extremal lengths:

mX(A) = sup
ρ

Lρ(A)2

Area(ρ)
,

where the supremum is over all Borel metrics ρ in the conformal class
of X, and where Lρ(A) is the infimum of the ρ-lengths of all paths in
A connecting distinct boundary components.

Modulus versus extremal length. The relationship between modulus and
extremal length is provided by the following; see, for example, [4, Sec-
tion 1.D].

Proposition 8.1. Let α be a simple closed curve in S and X a complex
structure on S. We have

extX(α) = 1/mX(α).

Hyperbolic length. There is a third measurement associated to a closed
curve α with respect to X ∈ Teich(S), when χ(S) < 0. In this case we
can regard X as a hyperbolic structure on S. In a hyperbolic surface,
every essential closed curve has a unique geodesic representative. The
length of the geodesic representative of α is thus an invariant of α that
we denote ℓX(α). This is called the hyperbolic length of α.

Hyperbolic collars. Keen’s collar lemma [20] provides a quantitative
lower bound on the width of an annular neighborhood of a simple
closed geodesic in a hyperbolic surface. From this one obtains lower
bounds on the length of a curve intersecting the given curve. This
is stated conveniently in terms of the geometric intersection number
i(α, β) for a pair of simple closed curves α and β.

Lemma 8.2. There is a function F : R+ → R+ that satisfies

lim
x→0

F (x) = ∞
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and also satisfies the following property: if α and β are simple closed
curves in S, then for any X ∈ Teich(S) we have

ℓX(β) ≥ i(α, β)F (ℓX(α)).

In fact, we can take the function F from Lemma 8.2 to be

F (x) = 2 sinh−1

(
1

sinh(x/2)

)
;

see, for example, [13, Lemma 13.6].

Hyperbolic length versus extremal length. Since a hyperbolic metric on S
is Borel, the hyperbolic length of a curve can be related to its extremal
length directly from the definition. The following result of Maskit gives
stronger bounds, independent of the topology of S [24].

Proposition 8.3. For α an essential closed curve in S we have

ℓX(α)

π
≤ extX(α) ≤ ℓX(α)

2
eℓX(α)/2.

Hyperbolic lengths with respect to different complex structures. The fol-
lowing result of Wolpert [36, Lemma 3.1] relates the distance in Te-
ichmüller space to distortion of hyperbolic lengths.

Proposition 8.4. Given X,Y ∈ Teich(S) and α an essential closed
curve in S, we have

ℓX(α) ≤ edTeich(X,Y )ℓY (α).

The next fact, sometimes called the Schwarz–Pick–Ahlfors lemma,
states that a holomorphic mapping is a contraction with respect to the
hyperbolic metrics on domain and range [3, Theorem A].

Theorem 8.5. If f : S → S ′ is a holomorphic mapping with respect
to complex structures X and Y on surfaces S and S ′, respectively, then
f is a contraction with respect to the hyperbolic metrics on the domain
and range. In particular,

ℓY (f(α)) ≤ ℓX(α)

for any closed curve α in S.

9. The location of short geodesics

We are now ready to prove Theorem 1.1, which states that, given
L > 0, there exists R > ǫ > 0 so that, for each g ≥ 1, we have

Gg(L) ⊂ Mg,[ǫ,R].
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Propositions 9.1 and 9.2 below give the containments Gg(L) ⊂ Mg,[ǫ,∞)

and Gg(L) ⊂ Mg,(0,R], respectively.

Short geodesics lie in the thick part. As mentioned in the introduction,
Proposition 9.1 below is due to Veech [35]. We repeat the proof here
for completeness, and note that it does not invoke Theorem 1.4.

Proposition 9.1. Let L > 0. There exists ǫ > 0 so that

Gg(L) ⊂ Mg,[ǫ,∞)

for all g ≥ 1.

Proof. First of all, since G1(L) is finite, it suffices to prove the propo-
sition for g ≥ 2. Indeed, we can take ǫ to be the minimum of the ǫ’s
obtained for g = 1 and for g ≥ 2, respectively.

Let [φ] ∈ ΨL(S) where S is a closed surface of genus g ≥ 2, and let
X ∈ Teich(S) be a point on the axis for φ. Let γ denote the essential
closed curve with shortest length ℓX(γ). We must find a uniform lower
bound ǫ for ℓX(γ).

Let F (x) be the function from Lemma 8.2, and let ǫ > 0 be such
that

F (x) > e3Lx

for every x < ǫ. We will show that ℓX(γ) ≥ ǫ.
Since g ≥ 2, any collection of pairwise disjoint, homotopically dis-

tinct, essential simple closed curves in S has cardinality at most 3g−3.
Thus, for some k ≤ 3g − 2 we have i(φk(γ), γ) 6= 0. By Lemma 8.2,

ℓX(φk(γ)) ≥ F (ℓX(γ)).

On the other hand, by Proposition 8.4, we have

ℓX(φk(γ)) ≤ λ(φk)ℓX(γ) = λ(φ)kℓX(γ) ≤ λ(φ)3g−2ℓX(γ)

Combining the last two displayed inequalities with the fact that 3g−2 <
3g and the assumption that [φ] ∈ ΨL(g), we have

F (ℓX(γ)) ≤ ℓX(φk(γ)) ≤ λ(φ)3g−2ℓX(γ) <

λ(φ)3gℓX(γ) ≤ (eL/g)3gℓX(γ) ≤ e3LℓX(γ).

By the definition of ǫ, this implies that ℓX(γ) ≥ ǫ, as desired. �
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Short geodesics lie in the thin part. The second half of Theorem 1.1 is
more involved. The statement is as follows.

Proposition 9.2. For every L > 0, there exists R > 0 so that, for
every g ≥ 1, we have

Gg(L) ⊂ Mg,(0,R].

Before getting to the proof, we describe a phenomenon that under-
scores the delicateness of Proposition 9.2.

Proposition 9.3. For any R0 > 0, we can choose an infinite sequence
of geodesics γg ⊂ Mg so that the lengths of the γg tend to 0 as g tends
to infinity, and γg ⊂ Mg,[R,∞).

As the proof of both propositions are in terms of pseudo-Anosov
homeomorphisms rather than geodesics in Mg, we first translate to
that language.

Given X ∈ Teich(S), let inj(X) denote the X-hyperbolic length of
the shortest essential closed curve. Given a pseudo-Anosov homeomor-
phism φ : S → S, write inj(φ) to denote the maximum of inj(X) as X
varies over the points of the axis for φ in Teich(S). For any pseudo-
Anosov φ : Sg → Sg with associated geodesic γφ ⊂ Mg we have:

inj(φ) ≤ R ⇐⇒ γφ ⊂ Mg,(0,R].

Proof of Proposition 9.3. Fix some L > L0, and consider any sequence
of pseudo-Anosov homeomorphisms

{φg : Sg → Sg}∞g=1

with log(λ(φg)) ≤ L/g. Given a characteristic covering S̃g → Sg, the

homeomorphism φg lifts to φ̃g : S̃g → S̃g. Moreover, under the induced

map of Teichmüller spaces Teich(S̃g) → Teich(Sg), the axis for [φg] lifts

to the axis for [φ̃g].

Fix some R0 > 0. For any g, there exists a covering S̃g → Sg where

inj(φ̃g) > R0. To see this, observe that up to the action of φg, there are
only finitely many homotopy classes of closed curves in Sg whose length
is less than R0 along the axis for [φg]. Any characteristic covering in
which none of these curves lifts to a closed curve will have the desired
property.

Since λ(φg) = λ(φ̃g), it follows that log(λ(φ̃g)) → 0 as g (and hence

the genus of S̃g) tends to infinity. On the other hand, the associated
geodesics lie in the R0-thick parts of the corresponding moduli spaces.

�
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We now turn towards the proof of Proposition 9.2. Before we begin,
we set some more notation.

Given a finite-volume 3-manifold M and any subset K ⊂ F of an
open fibered face F of M , let Ψ(L,K) denote the set of closed-surface
pseudo-Anosov homeomorphisms (φ : S → S) ∈ Ψ(L) such that, after
removing some φ-invariant subset of the singular points of the stable
foliation, the resulting surface S ′ is a fiber in R+ ·K with monodromy
φ′ = φ|S′ . We emphasize that S ′ is obtained by removing none, some,
or all of the singular points of the closed surface S.

Finally, we define

Ψ(0,R] = {φ : S → S : S any surface, inj(φ) ≤ R}.
This notation should remind the reader of Mg,(0,R], as each φ : Sg → Sg

in Ψ(0,R] corresponds to a geodesic contained in Mg,(0,R].

Proof of Proposition 9.2. We start by rephrasing the statement of the
proposition in terms of pseudo-Anosov homeomorphisms:

For every L > 0, there exists R > 0 so that

Ψ(L) ⊆ Ψ(0,R].

Since G1(L) is finite, it is enough to find R > 0 so that

Ψ(L) \ Ψ1(L) ⊆ Ψ(0,R].

Fix L > 0. We will prove the following statement by induction on r.

Let M be a hyperbolic 3-manifold with r ≥ 0 cusps.
There is an R(M) so that, for each open fibered face
F of M , we have Ψ(L, F ) ⊆ Ψ(0,R(M)].

Every element of Ψ(L) \ Ψ1(L) lies in Ψ(L, F ) for some fibered face
F of some M in T(L). The proposition then follows by taking R to be
the maximum of R(M), where M ranges over the finite set of manifolds
T(L) given by Theorem 1.4.

We first treat the case r = 0, that is, the case where M is closed.
Besides serving as the base case for the induction, this case will also
explain the main ideas for the more complicated inductive step.

Fix a closed, fibered, hyperbolic 3-manifold M . Since M has finitely
many fibered faces (Theorem 2.1), it suffices to show that, given some
such face F , there is and R(F ) so that

Ψ(L, F ) ⊆ Ψ(0,R(F )].
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It follows from Theorem 4.2 that there is a compact subset K of the
open face F with the property that:

Ψ(L, F ) = Ψ(L,K).

Thus, it suffices to show that, for any such K, there is an R(K) so that

Ψ(L,K) ⊆ Ψ(0,R(K)].

Fix a fibered face F of M , and let Γ0, Γ, M̃ , S̃, F̃±, and q̃ : R+ ·F →
Q(S̃, F̃±) be the objects associated to F as in Section 6. As above, fix
K ⊆ F so that Ψ(L, F ) = Ψ(L,K).

Let α be any essential simple closed curve in S̃. We take an annular
neighborhood A of α in S. By Theorem 6.1, q̃(K) is a compact subset

of Q(S̃, F̃±). Thus, we obtain a uniform lower bound on the q̃(η)-
distance between the boundary components of A and a uniform upper
bound on the q̃(η)-area, for every η ∈ R+ ·K. Consequently, the mod-
ulus meq(η)(A) is uniformly bounded below, and hence so is meq(η)(α).
By Proposition 8.1, the q̃(η)-extremal length of α is then uniformly
bounded from above. Then, by Proposition 8.3, the q̃(η)-hyperbolic
length is bounded from above. Denote this uniform bound by C.

Suppose (φ : S → S) ∈ Ψ(L,K), where S = Sg. (Since M is closed,
we do not remove any points of S in order to obtain a fiber in R+ ·K.)

Let p : S̃ → S be the covering map. The quadratic differential q̃(S)
descends to the quadratic differential q(S) on S defining the axis for
φ in Teich(S). Let X0 be the point on the axis corresponding to the
underlying complex structure of q(S). It follows that p(α) is a closed
essential curve in S with X0-hyperbolic length at most C.

Since φ ∈ Ψg(L), we have

log(λ(φ)) ≤ L/g.

If X ∈ Teich(S) is any point along the axis of φ between X0 and φ(X0),
then

d(X0, X) ≤ d(X0, φ(X0)) ≤ L/g,

and hence Propostion 8.4 implies

ℓX(α) ≤ eL/gℓX0
(α) ≤ eL/gC ≤ eLC.

For any other point X ∈ Teich(S) on the axis for φ, there is an n so
that φn(X) lies between X0 and φ(X0), and hence

ℓX(φ−n(α)) = ℓφn(X)(α) ≤ eLC.

Thus, inj(φ) ≤ eLC. As this bound is independent of the choice of
φ : S → S in Ψ(L,K), we can set R(K) = eLC, and this completes



SHORT GEODESICS IN MODULI SPACE 23

the proof in the base case.

We are now ready for the inductive step. Let M be a fibered hy-
perbolic 3-manifold with r > 0 cusps. As in the base case, it suffices
to focus on a single fibered face F and a compact subset K ⊂ F with
Ψ(L, F ) = Ψ(L,K).

Let S̃ be the common cover for all fibers in R+ ·K, as in Section 6.
We can carry out the same argument as in the base case in order to

find an essential curve α in S̃ with q̃(η)-hyperbolic length at most C
for all η ∈ R+ ·K.

Suppose that the punctured fiber S ′ ∈ R+ · K corresponds to the
closed surface pseudo-Anosov homeomorphism (φ : S → S) ∈ Ψ(L,K)
in the sense that the monodromy for S ′ is obtained by deleting the sin-
gularities for φ from S. If we let X ′ ∈ Teich(S ′) denote the underlying
complex structure for q(S ′), then as above ℓX′(p(α)) ≤ C.

Moreover, if X ∈ Teich(S) is the complex structure on S obtained
by filling in the punctures and extending X ′, then by Theorem 8.5

ℓX(p(α)) ≤ C.

Thus, as long as p(α) remains an essential curve after filling in the
punctures, we can argue just as in the base case and prove inj(φ) ≤ eLC.
In other words, we have shown that if (φ : S → S) ∈ Ψ(L, F ) and p(α)
is essential in S, then φ ∈ Ψ(0,N ], for N = eLC. It remains to deal with
the cases where p(α) is inessential in S. That is, we must find N ′ so
that any (φ : S → S) ∈ Ψ(L, F ) with p(α) inessential in S is contained
in Ψ(0,N ′]. Then we may set R(F ) = max{N,N ′}.

We will first define N ′, and then prove that it satisfies the above
statement. For each i = 1, . . . , r, let β1

i , . . . , β
si

i be the slopes from
Corollary 7.2, and define Dehn fillings

M j
i = M(∞, . . . ,∞, βj

i ,∞, . . . ,∞).

The manifold M j
i has r − 1 cusps. Therefore, by induction, there

are real numbers R(M j
i ), so that if F is any fibered face of M j

i , then
Ψ(L, F ) ⊂ Ψ(0,R(Mj

i )]. Let

N ′ = max{R(M1
1 ), . . . , R(M sr

r )}.
Let φ : S → S be an element of Ψ(L, F ) with p(α) inessential in

S. We must show that φ ∈ Ψ(0,N ′]. The idea is to show that, up to

removing singularities, φ is the monodromy for some M j
i .

We can view the mapping torus Mφ as being obtained from M by
Dehn filling:

Mφ = M(β1, . . . , βr).
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Let S ′ denote the fiber in the cone over F corresponding to S; recall
that S ′ is obtained by removing from S a set of singular points of the
foliations for φ.

Each slope βi 6= ∞ is the intersection of S ′ with the corresponding

boundary component of the truncated manifold M̂ ; see Section 7. In
particular it makes sense to write βi = βi(S

′).
If p(α) is not essential in S, then p(α) must be trivial in

Mφ = M(β1(S
′), . . . , βr(S

′))

and hence βi(S
′) = βj

i for at least one i ∈ {1, . . . , r} and some j ∈
{1, . . . , si}. It follows that the manifold M j

i defined above fibers with
fiber S ′′ where S ′ ⊂ S ′′ ⊂ S, and S ′′ is obtained from S ′ by adding in
the φ-orbit of the singular point corresponding to the ith cusp of M .

Suppose F j
i is the open face of M j

i with S ′′ ∈ R+ · F j
i . Since φ ∈

Ψ(L, F ), it follows that

φ ∈ Ψ(L, F j
i ) ⊂ Ψ(0,R(Mj

i
)] ⊂ Ψ(0,N ′],

as desired. �

Remarks on the proof. (1) It is conceivable that one might be able to

find a single curve α ∈ S̃ that when projected to any fiber remains
essential after filling in the missing singular points, simplifying the
proof, though it is not clear how to find such a curve.

(2) It can indeed happen that a punctured surface has a hyperbolically
short essential closed curve, while the filled in surface has no short
curves. For example, start with a closed surface; it has some shortest
essential curve. Next, puncture the surface at two points. If the points
are close together, a curve surrounding these two punctures can have
an annular neighborhood of arbitrarily large modulus, and so this curve
is arbitrarily short on the punctured surface. This short curve becomes
inessential when the punctures are filled back in.
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