
Mixing Surfaces, Algebra,
and Geometry

Dan Margalit

Dan Margalit is a professor of mathematics at the Georgia Institute of Technol-
ogy. His email address is margalit@math.gatech.edu.
Dedicated to the memory of Maryam Mirzakhani 1977–2017.
This material is based on work supported by the National Science Foundation
under Grant No. DMS-2203431.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2690

Introduction
This article is a written version of the Maryam Mirzakhani
lecture, which the author was honored to give at the Joint
Mathematical Meetings in May 2022. Mirzakhani was, of
course, the first woman and first Iranian to win the Fields
medal.

On a basic level, Mirzakhani’s work centers around the
geometry of surfaces, as understood through their simple
curves. Here, a surface is a 2-dimensional manifold, such
as a sphere, a torus, a double torus, etc.; see Figure 1. And
a simple curve in a surface is an embedded loop, that is,
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Figure 1. The first few surfaces: a sphere, a torus, a double
torus, and a triple torus.

a path that starts and ends in the same place, never cross-
ing itself. See Figure 2 for an example of a simple curve
in the double torus that was drawn by the Fields medalist
William Thurston in his research announcement [Thu88]
(more about his work later).

Starting from this humble-seeming topic, Mirzakhani
made surprising and sweeping connections between nu-
merous fields of mathematics, including algebraic geom-
etry, Teichmüller theory, moduli spaces, dynamics, homo-
geneous spaces, symplectic geometry, and billiards.

Figure 2. Thurston’s complicated simple curve.

The goal of this article is to explain some recent work on
the theory of pseudo-Anosov maps. Informally, a pseudo-
Anosov map 𝑓 ∶ 𝑆 → 𝑆 is a map that mixes the surface 𝑆
in a complicated way. One way to think about this is that
if we start with any simple curve 𝑐 in 𝑆, the curves in the
sequence 𝑐, 𝑓(𝑐), 𝑓2(𝑐) get more and more complicated, as
in Thurston’s picture (for instance, the number of times
𝑓𝑘(𝑐) is forced to pass from the front of the surface to the
back will increase exponentially with 𝑘).

In this article, we will explain three theorems of the au-
thor and his collaborators. Along the way, we will connect
the theory of pseudo-Anosov maps to number theory, the
theory of 3-manifolds, complex analysis, and fluid mixing.
Our work is often inspired by and connected to the work
of Mirzakhani. Fittingly, we begin by describing a theorem
of Mirzakhani that can be viewed as a motivation for the
work that follows.

A Motivating Theorem of Mirzakhani
Given a curve on a surface, we can measure its length in
a variety of ways. We can endow the surface with a Rie-
mannian metric and compute lengths that way. Or we can
fix a projection of the surface to the plane and measure
the lengths of the projections (approximately how long is
Thurston’s curve in this sense?). Here is a basic question:

Given a particular surface, how many simple curves are
there of length at most 𝐿?

As stated, the answer is easy: infinitely many. Indeed,
given a curve with length less than 𝐿 we can deform it a
little bit in order to obtain another curve with length less
than 𝐿 (such a deformation is called a homotopy). A bet-
ter version of the question is: how many homotopy classes
of simple curves are there of length at most 𝐿?

This question is similar to the classical lattice counting
problem: in a ball of radius 𝐿 in ℝ𝑛, how many points of
the lattice ℤ𝑛 are there? In fact, homotopy classes of (sim-
ple) closed curves in 𝑇2 exactly correspond to (primitive)
elements of ℤ2. While there is no closed form answer to
the lattice question—it depends on the center and the ex-
act value of 𝐿—we can say the answer is on the order of
𝐿𝑛.

If we remove the word “simple,” the answer to the curve
question is exponential in 𝐿 for most surfaces. To see this
consider two non-homotopic curves 𝑎 and 𝑏 in the double
torus with |𝑎∩𝑏| a single point. We can assume the lengths
of 𝑎 and 𝑏 are both 1. For every (freely reduced) word of
length 𝐿 in 𝑎 and 𝑏 we can construct a (non-simple) curve
by following 𝑎 and 𝑏 according to the word. The curve will
have length at most 𝐿, hence the exponential growth.

Mirzakhani proved that for simple curves, the answer is
strikingly different [Mir08]. For the statement we denote
by 𝑆𝑔 the closed surface of genus 𝑔, so 𝑆0 is the sphere 𝑆2
and 𝑆1 is the torus 𝑇2, etc.

Theorem (Mirzakhani). For 𝑔 ≥ 2, the number of simple
curves in 𝑆𝑔 with length at most 𝐿 is on the order of 𝐿6𝑔−6.

Why a polynomial instead of an exponential? Why
6𝑔−6? A little experimentationwill quickly reveal that sim-
ple curves are rare: if we choose a random word in 𝑎 and 𝑏
as above, we can bet that the resulting curve is not simple.
We can try to modify this construction so that only sim-
ple curves are produced. That is exactly what Birman and
Series did in 1985. In doing so they discovered the lower
bound of 𝐿6𝑔−6 and asked if it was sharp [BS85]. Mirza-
khani’s theorem confirmed this (and much more) using a
tour de force of hyperbolic geometry, Teichmüller theory,
combinatorics, and dynamics. One upshot of this theo-
rem is that simple curves are special, much in the same
way that prime numbers are special.

Taffy Pullers
To get into the right frame ofmind to study pseudo-Anosov
maps, we will begin by investigating a visual (and tasty)
way to produce complicated simple curves: taffy pulling. A
taffy pulling machine aerates taffy by repeatedly stretching
the taffy and folding it. Figure 3 shows two different taffy
pulling machines.

These pictures, as well as several others in this sec-
tion, are meant to be viewed as animations. To ac-
cess the animated versions, visit the following link:
https://dmargalit7.math.gatech.edu/mm.shtml.
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Figure 3. Two taffy pullers.

The taffy puller on the left in Figure 3 has three prongs
and the one on the right has four. Which machine is more
efficient? How do we even make sense of this question?

We can start to understand the taffy puller on the left by
drawing a planar slice of it. If we choose the planar slice
to pass perpendicularly through the prongs, we obtain a
plane with three dots, one for each prong. We may then
draw a simple curve in the planeminus the dots—an imag-
inary piece of taffy—and trace the evolution of the curve
as we run the taffy puller. We want to see how quickly the
curve is folding in on itself. If we can quantify that, we will
have a sense for how efficient the taffy puller is.

Figure 4. The effect of the 3-pronged taffy puller on a planar
slice of a piece of taffy; in the picture, red dots are prongs and
white dots are hinges.

Figure 4 shows what happens to a specific curve under
one iteration of the 3-pronged machine (the white dots
are hinges, which are not in the plane). To get a handle on
the efficiency of this taffy puller we should continue to run
the machine and measure the complexity of the resulting
curves. The problem, though, is that the pictures are al-
ready difficult to draw. It would be hard to draw the curve
after two iterations, let alone 10 or 100. What to do?

Thurston’s work on curves gives a solution. One of his
many brilliant ideas is to consider the blue object on the
top left of Figure 5. This is a graph in the plane with a well-
defined tangent line at every point. Thurston calls such a
graph a train track.

What is special about the train track in Figure 5 is that
we can take the curve in the figure and push it in a smooth
way onto the train track; see the top right of the figure. In
other words, we may smoothly deform the curve so that
it lies close to the train track and has compatible tangent
lines with the train track. We may keep track of the num-
ber of “strands” of the curve that pass over each edge (or
branch) of the train track. In this way, we obtain a train

5 2

714
10

Figure 5. Top: deforming a curve towards a train track;
bottom: the resulting labeled train track.

track with labeled edges, as shown at the bottom of the
figure.

We claim that this process loses no information about
the curve we started with. Indeed, from the labeled train
track, we can recover the curve (up to homotopy) by re-
placing each branch of the train track with a collection of
parallel arcs, the number of arcs being dictated by the label
on the branch. The train track then tells us how to glue the
arcs together, end to end, to make a curve.

A first observation about labeled train tracks is thatmost
of the labels are redundant. For instance, the 14 must be
14 since this branch is the confluence of branches labeled
10, 2, and 2. This is called the switch condition: at each
vertex (or, switch) the sum of the ingoing labels equals the
sum of the outgoing labels (the train track is not oriented,
and so it is irrelevant which branches we call incoming and
outgoing at each switch). The 10 and the 7 are similarly
redundant. The end result is that the labels are completely
determined by just two: the 5 and the 2.

In this way, labeled train tracks give a succinct way of
encoding complicated curves in a surface: for every pair of
non-negative integers 𝑥 and 𝑦, we obtain a curve based on
the blue track; cf. Figure 6. (If 𝑥 and 𝑦 are not relatively
prime, we obtain a collection of disjoint curves.) In this
notation, the curve from the left-hand side of Figure 4 is
(1, 0). Let us now use this idea to pursue our goal of un-
derstanding the image of this curve under iteration of the
taffy puller.

Figure 6. Left: a train track labeled by variables; right: its
image under the taffy puller.

To this end, we take the train track from Figure 5 and we
label two of the branches 𝑥 and 𝑦 as in the left-hand side of
Figure 6. Again, once we label those branches 𝑥 and 𝑦, the
other branches inherit their own labels. For instance, the
branch adjacent to the 𝑥-branch is labeled 2𝑥, et cetera.
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At this point, the reader should be skeptical: shouldn’t
the train track get more and more complicated as we apply
the taffy puller? If so, have we really made any progress?
Let’s see!

We can apply the taffy puller to the train track from the
left-hand side of Figure 6. We obtain the twisted train track
shown in the right-hand side of Figure 6, which is indeed
much more complicated than the original train track. But
then, following Thurston, we observe the following mira-
cle: the twisted train track can be smoothly deformed back
onto the original train track. So if we are careful about
keeping track of the labels on every branch of the twisted
train track, we can re-imagine the twisted train track as the
original train track with new labels. The new labels on the
𝑥- and 𝑦-branches are 5𝑥 + 2𝑦 and 2𝑥 + 𝑦. In other words,
the taffy puller preserves the blue train track, changing the
𝑥- and 𝑦-labels by the matrix

𝐴 = ( 5 2
2 1 ) .

Wehave converted our topology problem into a linear alge-
bra! We now know that the image of the curve (1, 0) under
𝑛 iterations of the taffy puller is the curve corresponding
to the image of (1, 0) under 𝐴𝑛. For example, the 100th
iterate has 𝑥𝑦-coordinates

(306455739432329561800579729698332458876
30954508753693529117371074705767728665,
1269381235399462048103798648873936844039
9451028645237163046012909971924256728).

By linear algebra we know that the growth rate of these
numbers is governed by the eigenvalues of 𝐴, namely 𝜆 =
(1 + √2)

2
and its inverse.1 Specifically, for large 𝑛 we have

that

𝐴𝑛+1(𝑣) ∼ 𝜆𝐴𝑛(𝑣).
For a curve represented by the train track, the magnitude
of the corresponding 2D vector is a good measure of the
complexity of the curve. Therefore, 𝜆 is a good measure
of the efficiency of the taffy puller. We call this the stretch
factor of the taffy puller.

Figure 7. Left: a curve on a taffy puller; right: the image of the
curve and a train track for it.

1The number 1 + √2 is the silver ratio, the growth rate of the Pell sequence:
0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378…

What about the 4-pronged taffy puller? If we play the
same game, we can find that the image of the curve on the
left-hand side of Figure 7 is the curve on the right-hand
side of the figure. We then are led to the train track on the
right-hand side of Figure 7. By a similar analysis as in the
3-pronged case, we compute a 3 × 3 matrix and find that
the stretch factor for the 4-pronged puller is nothing other

than (1 + √2)
2
, the same as for the 3-pronged taffy puller!

This may seem like too much of a coincidence, since
these two taffy pullers have little to do with each other, at
least on the face of it. So why the same stretch factor? We
can give two answers. The first answer is that, in a sense,
the two taffy pullers are secretly the same. That is, the pat-
tern of curves we get from the 4-pronged taffy puller is ex-
actly the same as the pattern of curves for the 3-pronged
taffy puller, just with an extra red dot thrown in. So in a
sense the fourth prong is not actually helping to stretch the
taffy(?!).

The second answer is that the number (1 + √2)
2

is
the smallest possible stretch factor for a taffy puller with
three prongs. So this is far from a random number. But
why would two different taffy puller designers make taffy
pullers with the smallest stretch factor, instead of a larger
stretch factor? First, we can always run the taffy puller
longer to get larger and larger stretch factors (the stretch
factor for the 𝑛th iterate is 𝜆𝑛). And it stands to reason that
when designing a taffy puller the goals are efficiency, sim-
plicity, and elegance. Symmetric/beautiful/efficient pat-
terns tend to give smaller stretch factors. We will return
to this idea when we discuss the work of Penner and our
work with Farb and Leininger below.

Lest we lose sight of our goal, let us explain what
taffy pullers have to do with our main objects of inter-
est, surfaces and homeomorphisms. We may think of an
𝑛-pronged taffy puller as giving a homeomorphism of a
plane with 𝑛 marked points (equivalently, with 𝑛 points
removed). Through each iteration of the taffy puller we
can think of the plane as getting stretched by themotion of
the prongs, as though the entire plane was made of a thin
layer of taffy; this gives the homeomorphism. So the story
developed here is really a story about homeomorphisms
of surfaces. We will continue this story in the next section.

If the reader is interested in more about the mathemat-
ical history of taffy pullers, we highly recommend the ac-
count by Jean-Luc Thiffeault [Thi18].

Pseudo-AnosovMaps and the Nielsen–Thurston
Classification
In the 1970s, William Thurston proved the following the-
orem, which gives a classification of surface homeomor-
phisms into three types [Thu88]. We will state the theo-
rem first and then explain all of the terms. One thing we
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will see is that the taffy pullers discussed above can be in-
terpreted as examples of the pseudo-Anosov maps in the
theorem. In later sections, we will not often use the pre-
cise definition of a pseudo-Anosov map. For a first pass,
one should think of a pseudo-Anosov map as one that is
similar to a taffy puller in that, asymptotically, it stretches
all curves by the stretch factor 𝜆 as we iterate.

Theorem. Let 𝑓 ∶ 𝑆 → 𝑆 be a homeomorphism of a surface.
Then 𝑓 is homotopic to a map ℎ that is either. . .

1. periodic: some nonzero power of ℎ is the identity,
2. reducible: ℎ preserves a nonempty collection of disjoint, es-

sential simple closed curves, or
3. pseudo-Anosov: ℎ preserves a pair of transverse measured

foliations, multiplying the measures by 𝜆 and 1/𝜆, respec-
tively.

This is called the Nielsen–Thurston classification be-
cause Jakob Nielsen proved many results in this general di-
rection (although pseudo-Anosov maps were not defined
prior to Thurston).

We now explain the three types. A periodic homeomor-
phism should be thought of as a rigid rotation of the sur-
face. The reader might try to imagine some of these, using
the pictures of surfaces given above. Different embeddings
of a surface in ℝ3 suggest different periodic maps. (For a
challenge: find a period 3 homeomorphism of the double
torus 𝑆2.)

A reducible homeomorphism is so-called because ℎ re-
stricts to a homeomorphism of the complement of the
given collection of curves, and we may think of the result-
ing map as a simplification (or reduction) of ℎ to a map
of simpler surfaces. (Here, a simple curve is essential if it
is not homotopic to a point in 𝑆.)

Before delving into the definition of a pseudo-Anosov
map, let us look at an example that you may already be
familiar with. Consider the matrix 𝐴 = ( 2 1

1 1 ). The matrix
𝐴 acts on ℝ2 with two eigenspaces. The eigenvalues of 𝐴
are 𝜑2 and 1/𝜑2 where 𝜑 is the golden ratio. Beyond this
basic linear algebra, there is an even richer picture to be
had: 𝐴 preserves two foliations of ℝ2. Each foliation is
the collection of lines in ℝ2 parallel to one eigenspace. We
refer to these lines as the leaves of the foliation.

What is more, each of these foliations has a measure,
that is, a function that assigns a non-negative real number
to each path in ℝ2 transverse to the given foliation. Specif-
ically, the measure is the total variation of the path in the
direction perpendicular to the foliation (so the measure of
a path in a leaf of the foliation is zero and the measure of a
path perpendicular to the foliation is its Euclidean length).
Beyond preserving the two foliations, we can say that 𝐴
multiplies the measures by 𝜑2 and 1/𝜑2, respectively. So,
for instance, if we draw a 1 × 1 square with respect to the

two foliations for 𝐴, its image under 𝐴 will be a rectangle
with sides 𝜑2 and 1/𝜑2.

Finally, a pseudo-Anosov homeomorphism of a surface
𝑆 is a map 𝑓 ∶ 𝑆 → 𝑆 so that, away from finitely many
points of 𝑆, the action of 𝑓 looks like (or, is conjugate to)
the action on ℝ2 of a matrix with determinant 1 and two
real eigenvalues, such as 𝐴. As in the Nielsen–Thurston
classification there are two measured foliations on 𝑆 that
are preserved by 𝑓 and whose measures are multiplied by
𝜆 and 1/𝜆. The number 𝜆 is called the stretch factor for 𝑓.

Figure 8 depicts a pair of transverse measured foliations
on 𝑆2 (to obtain measures, define charts from 𝑆2 to ℝ2

that take the foliations in 𝑆2 to foliations of ℝ2 by lines
and pull back natural measures there, as above). We show
how a pseudo-Anosov 𝑓might distort a square drawn with
respect to these foliations.

Figure 8. Top: a depiction of a pseudo-Anosov map; bottom:
two foliations of ℝ2 preserved by the matrix 𝐴.

To make a first example of a pseudo-Anosov map on
one of the surfaces 𝑆𝑔, we observe that the action of 𝐴 on
ℝ2 descends to a well-definedmap 𝑓 ∶ 𝑇2 → 𝑇2, where the
torus 𝑇2 is regarded as the quotient ℝ2/ℤ2. To verify 𝑓 is
well defined, we simply check that for any (𝑢, 𝑣) ∈ ℝ2 and
any (𝑚, 𝑛) ∈ ℤ2, we have that 𝐴(𝑢, 𝑣) and 𝐴(𝑢 + 𝑚, 𝑣 + 𝑛)
have the same image in 𝑇2 = ℝ2/ℤ2 (i.e., the coordinates
for 𝐴(𝑢, 𝑣) and 𝐴(𝑢 + 𝑚, 𝑣 + 𝑛) have the same fractional
parts). The map 𝑓 is locally modeled on 𝐴: the measured
foliations onℝ2 descend tomeasured foliations on 𝑇2 and
𝑓 acts on 𝑇2 by preserving the foliations, multiplying the
measures by 𝜆 = 𝜑2 and 1/𝜆 = 1/𝜑2.

In the same way that most vectors in ℝ2 are stretched
asymptotically by 𝜑2 by the matrix 𝐴, curves in 𝑇2 have
their length stretched asymptotically by 𝜆 = 𝜑2 as we it-
erate the pseudo-Anosov map 𝑓. This is because 𝑓 is be-
having locally like the matrix 𝐴. This agrees with our ob-
servations about taffy pullers, where we saw curves become
increasingly more complicated under iteration of the map.
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Three Faces
An internet meme (of unclear origin) states:

The Japanese say you have three faces. The first face
you show to the world. The second face you show to
your close friends and your family. The third face you
never show anyone. It is the truest reflection of who
you are.2

We will now discuss three faces of, or ways of think-
ing about, pseudo-Anosov maps. The three perspectives
are increasingly deep and rich, the last being most closely
related to the work of Mirzakhani. After discussing the
three faces we will aim to understand, from all three per-
spectives, how we can describe the set of pseudo-Anosov
maps with log 𝜆 ≤ 𝐿. As we will see, this line of inquiry is
analogous to the aforementioned theorem of Mirzakhani,
which counts simple curves with length at most 𝐿.

Face 1: Pseudo-Anosov Maps and the Mapping
Class Group
For a surface 𝑆, the mapping class group MCG(𝑆) is
a quotient of the group of (orientation-preserving) self-
homeomorphisms of 𝑆. Specifically, two homeomor-
phisms are equivalent if they are homotopic, that is, if one
can be deformed to the other in a continuous way. This is
a countable group that encodes the symmetries of 𝑆.

We would be remiss not to mention that the theory of
mapping class groups recently celebrated its 100th birth-
day. The first lecture on the topic was given by Max Dehn
in Breslau, Poland, on February 22, 1922.

Today, mapping class groups are connected to many ar-
eas of mathematics and science, from physics to dynamics
to algebraic geometry to number theory. Here are three of
the ways that mapping class groups arise in mathematics
(see [FM12] for details):

• The Dehn–Nielsen–Baer theorem says that every auto-
morphism of the fundamental group 𝜋1(𝑆) is induced
by an element of MCG(𝑆𝑔).

• The Earle–Eells theorem implies that 𝑆𝑔-bundles over
a space 𝐵 correspond bijectively to homomorphisms
𝜋1(𝐵) → MCG(𝑆𝑔).

2Compare [Eli39]

• By the work of Fricke, MCG(𝑆𝑔) is the (orbifold)
fundamental group of the moduli space of algebraic
curves of genus 𝑔.

The Nielsen–Thurston classification can be regarded as
a trichotomy for the mapping class group: a mapping
class is considered to be pseudo-Anosov if it has a pseudo-
Anosov representative. So this is the first face of a pseudo-
Anosov homeomorphism: as an element of MCG(𝑆).

As we will see, the pseudo-Anosov property of a map-
ping class has profound implications for the correspond-
ing automorphisms of 𝜋1(𝑆), surface bundles, and loops
in moduli space.

Face 2: Pseudo-Anosov Maps and 3-Manifolds
The second face of a pseudo-Anosov map—as a mapping
torus—is richer than the first. The story begins with the
following quote from Thurston [Thu01]:

It seemed pretty obvious that a 3-manifold that fibers
over the circle couldn’t possibly have a hyperbolic struc-
ture. I kept trying to think of proofs of that. I kept
proving it but then when I went to explain it to some-
body the proof had a fallacy. . .

Let us explain the two technical terms in this quote, “fibers
over the circle” and “hyperbolic.” We begin with the for-
mer. Given any homeomorphism 𝑓 ∶ 𝑆 → 𝑆, we may
construct a 3-dimensional manifold, called the mapping
torus 𝑀𝑓, by taking the product 𝑆 × [0, 1] and gluing the
two ends by 𝑓. More precisely:

𝑀𝑓 = (𝑆 × [0, 1]) / ∼
where (𝑥, 0) ∼ (𝑓(𝑥), 1) for all 𝑥 ∈ 𝑆. In Thurston’s quote, a
3-manifold that fibers over the circle is nothing other than
such a mapping torus.

Next, a manifold is hyperbolic if it admits a Riemann-
ian metric of constant curvature −1 (equivalently, if it is a
quotient of hyperbolic space). Thurston’s quote, which is
from 2001, describes his thinking in the 1970s, when he
and others were wondering which 3-manifolds were hyper-
bolic.

Why would Thurston think that mapping tori could not
be hyperbolic? It helps to draw a picture of 𝑀𝑓, as in Fig-
ure 9. Our illustration of 𝑀𝑓 looks at first glance like a
direct product 𝑆 ×𝑆1. And indeed if 𝑓 is the identity this is
the case. When 𝑓 is not the identity, 𝑀𝑓 is a twisted prod-
uct. To understand this twistedness, we must look inside
𝑀𝑓.

Consider the curve 𝑐 in 𝑆 shown in the figure. As we
push 𝑐 around the circle direction, it traces out a tube. If
𝑓(𝑐) is different from 𝑐 then the tube does not close up after
traveling around the circle direction once and we can keep
extending the tube.

On the other hand, if 𝑓 does preserve a simple closed
curve 𝑐 in 𝑆, then the tube created by pushing 𝑐 in the circle

742 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 5



c

f(c)

Figure 9. A mapping torus 𝑀𝑓 along with a curve 𝑐, its image
𝑓(𝑐), and the tube connecting the two.

direction closes up to give a torus in𝑀𝑓. Similarly, if some
nonzero power of 𝑓 preserves 𝑐 (even up to homotopy),
then we again obtain an (immersed) torus, except now the
torus wraps around the circle direction more than once.

Let us circle back to the question of hyperbolicity. It is a
fact that a hyperbolic manifold cannot contain an (essen-
tial) torus, since a torus is inherently a Euclidean object
(the real reason is that the torus would give rise to a ℤ2 in
Isomℍ3, which does not exist). So by the previous para-
graph, if we want𝑀𝑓 to be hyperbolic then no power of 𝑓
can preserve (the homotopy class of) any simple curve. It
might be hard to believe that such an 𝑓 exists.

But we know better. As with our taffy puller examples,
pseudo-Anosov maps have the desired property: no power
fixes any simple curve. So at least those 𝑀𝑓 have a chance
of being hyperbolic. Thurston showed that indeed all of
thesemapping tori are hyperbolic, that is,𝑀𝑓 is hyperbolic
if and only if 𝑓 is (homotopic to) a pseudo-Anosov map
(his argument is fleshed out by Otal [Ota96]). And so we
have the second face of a pseudo-Anosov map, as a hyper-
bolic mapping torus.

Face 3: Pseudo-Anosov Maps and Moduli Space
The third face of a pseudo-Anosov map is the most chal-
lenging (and also the most rewarding): we will see that
pseudo-Anosovmaps can be regarded as loops in themod-
uli spaceℳ(𝑆) of complex structures on 𝑆. Before we get to
that, let us first aim to understand what this moduli space
is.

A complex structure on 𝑆 is a way of identifying 𝑆 with
the complex plane ℂ, at least locally. More specifically, we
cover 𝑆 with open sets𝑈𝛼 and choose for each 𝛼 an embed-
ding 𝜙𝛼 ∶ 𝑈𝛼 → ℂ called a chart. The catch is that on the
open set 𝑈𝛼 ∩𝑈𝛽 there are two different charts, 𝜙𝛼 and 𝜙𝛽,
and we insist that the change of coordinates 𝜙−1𝛼 ∘ 𝜙𝛽 is a
biholomorphic map. This definition is analogous to that
of a smooth structure. The last condition ensures that the
different charts are consistent with one another.

How do we even make a single complex structure on
𝑆? When 𝑆 is the torus 𝑇2 every complex structure on 𝑆

is given by a parallelogram 𝑃 in the complex plane with
unit area. We obtain the torus topologically by identifying
opposite sides of 𝑃. The interior of 𝑃 is then an open set
in 𝑇2 = 𝑃/∼ that is already identified with a subset of ℂ
(the chart is the inclusion map). It is a good exercise to
find the other open sets and charts needed to give 𝑇2 a
complex structure. But since the interior of 𝑃 is “most” of
𝑇2, it should be believable that 𝑃 gives rise to a (unique)
complex structure on 𝑇2.

Two complex structures on a surface 𝑆 are considered
to be the same if there is a biholomorphic map from one
to the other. For example if we rotate a parallelogram 𝑃 to
obtain a parallelogram 𝑃′, then 𝑃 and 𝑃′ give equivalent
complex structures on 𝑇2. On the other hand, the complex
structure on 𝑇2 coming from a square is not equivalent to
the one coming from a (non-square) rectangle. Intuitively,
this is because holomorphic maps preserve angles, but a
map from a square to a rectangle must distort angles.

How do we move around in the moduli space ℳ(𝑆)?
Again, let us start with the case 𝑆 = 𝑇2 and in particular
at the point inℳ(𝑇2) corresponding to a square. If we de-
form the square through a continuous family of parallelo-
grams, that gives a continuous deformation of the complex
structure on 𝑇2, and hence a path in ℳ(𝑇2).

We now describe two explicit paths in ℳ(𝑇2). For 𝜏 ∈
[1,∞) let 𝑃𝜏 be the unit-area parallelogram with vertices 0,
1/𝜏, 𝜏𝑖, and 1/𝜏 + 𝜏𝑖. When 𝜏 = 1, the parallelogram 𝑃𝜏 is
a square and otherwise it is a rectangle that gets skinnier
as 𝜏 → ∞. Similarly, for 𝜏 ∈ [0,∞) let 𝑄𝜏 be the unit-area
parallelogram with vertices 0, 1, 𝑖 + 𝜏 and 𝑖 + 𝜏 + 1 in ℂ.
The parallelogram 𝑄𝜏 shears as 𝜏 increases. In both cases,
the continuously changing shapes of the parallelograms
give continuously changing complex structures on 𝑇2, and
hence a path in ℳ(𝑇2).

Figure 10. The moduli space of the torus.

We usually draw ℳ(𝑇2) so that it looks like a long and
pointy pillowcase, as in Figure 10. It turns out this space
is homeomorphic to ℝ2. (Can you see from the above dis-
cussion why it should be 2-dimensional?). There are two
special points, corresponding to the complex structures on
𝑇2 coming from a square (bottom left of the figure) and
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a regular hexagon with sides identified (top left of the fig-
ure); these are the only two tori with extra symmetry, be-
sides the translational symmetry along the 𝑆1 factors (all
parallelograms have reflections, but these are not allowed
in the complex setting).

The complex structures corresponding to skinny paral-
lelograms are off to the right in the picture; this is the cusp
of moduli space, or the part at infinity. The path 𝑃𝜏 travels
off into this region. This region is also called the thin part
of moduli space; not because moduli space is thin there
(which is also true) but because the tori there are thin.

Figure 11. The loop 𝑄𝜏 in the moduli space of the torus.

What about𝑄𝜏? Far from traveling into the cusp ofmod-
uli space, we claim that 𝑄𝜏 is a closed loop. Indeed, we
will show that 𝑄0, the square torus, is the same point as
𝑄1, the torus corresponding to a parallelogram with acute
angle 𝜋/4. In other words, there is a biholomorphic (or,
angle preserving) map from 𝑄0 to 𝑄1. Indeed, if we di-
vide the 𝑄1 parallelogram into two triangles with a vertical
line, then we can reassemble those two triangles (respect-
ing identifications) and obtain the square corresponding
to 𝑄0. See Figure 11 for an illustration of 𝑄𝜏.

Now that we have in hand an example of a loop in
moduli space, we can return to our stated goal of relat-
ing loops in moduli space to pseudo-Anosov maps. Let us
look again at 𝑄0 and 𝑄1. Suppose we decorate the square
𝑄0 by labeling its pairs of opposing sides by 𝑎 and 𝑏. As
we vary 𝜏 we can take the decorations with us. When we
get to 𝑄1, we indeed have a torus that is biholomorphic to
the square torus, but the decoration is different: 𝑎 and 𝑏
are now at an angle of 𝜋/4. More to the point, 𝑄0 and 𝑄1
differ by a homeomorphism of 𝑇2 that fixes 𝑎 and sends 𝑏
to the diagonal (this is like a shear in linear algebra).

The previous paragraph gives a correspondence be-
tween loops in ℳ(𝑇2) and elements of MCG(𝑇2). So
what does this have to do with pseudo-Anosov maps? It
turns out that, for general 𝑆, pseudo-Anosov maps are
exactly the ones that correspond to essential loops in
ℳ(𝑆). There is a natural metric on ℳ(𝑆), called the Teich-
müller metric, which measures the distortion required to
get from one complex structure to another, and the loops

corresponding to pseudo-Anosov maps are exactly the
ones with geodesic representatives in this metric. The
length of the loop is log 𝜆, where 𝜆 is the stretch factor.

Small Stretch Factors
We gain insight into a geometric space by understanding
the set of lengths of loops, the so-called length spectrum.
And one way to probe the length spectrum is to list the
smallest elements. Mirzakhani’s theorem above gives a
count of the number of short curves on a surface. Since
short loops inmoduli space correspond to pseudo-Anosov
maps with small stretch factor 𝜆, we would like a similar
count of the pseudo-Anosov maps with small stretch fac-
tor.

It is a fact that for every surface there is a smallest stretch
factor among all pseudo-Anosov maps. Even more, the set
of stretch factors has no accumulation points in ℝ, and so
it makes sense to talk about the smallest 27 stretch factors
(for example).

So what is this smallest stretch factor? For the torus it
is 𝜑2 ≈ 2.168, the stretch factor seen above (exercise!). For
𝑆2, Cho and Ham proved that the smallest stretch factor is
the largest root of the polynomial 𝑥4 − 𝑥3 − 𝑥2 − 𝑥 + 1, or
about 1.722. See a pattern? Actually, nobody knows the
pattern. The smallest stretch factor for MCG(𝑆𝑔) is still a
mystery for all 𝑔 ≥ 3.

While we do not know in general which pseudo-Anosov
maps have the smallest stretch factor for each surface we
still can, surprisingly, give qualitative descriptions of what
they look like.

Penner proved [Pen91] there are numbers 𝑐 and 𝐶 so
that the log of the smallest stretch factor 𝜆𝑔 on 𝑆𝑔 lies be-
tween 𝑐/𝑔 and 𝐶/𝑔. We write this as

log 𝜆𝑔 ≈
1
𝑔 .

So as the genus increases, the size of the smallest stretch
factor gets smaller and smaller, indeed, closer and closer
to 1.

rg

f2

f
g =  rg  f2

Figure 12. The Penner construction of pseudo-Anosov maps
with small stretch factor.
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The upper bound 𝐶/𝑔 is obtained by giving an explicit
example 𝑓𝑔 of a pseudo-Anosov map on 𝑆𝑔 with stretch
factor less than 𝐶/𝑔. Here is (very roughly) how Penner
constructs 𝑓𝑔. First, he chooses a pseudo-Anosov map 𝑓2
on the surface of genus 2 with one boundary component.
Since the latter surface lies inside 𝑆𝑔 for all 𝑔 ≥ 3 we may
consider 𝑓2 as an element of MCG(𝑆𝑔) for all 𝑔 ≥ 3. Let 𝑟𝑔
be a rotation of 𝑆𝑔 by one “click” (a rotation by 2𝜋/𝑔) as
in Figure 12. Then 𝑓𝑔 is given by the composition

𝑓𝑔 = 𝑟𝑔 ∘ 𝑓2.
The map 𝑓2 has some stretch factor 𝜆, and the map 𝑟𝑔 does
no stretching. So the net effect is that the stretching done
by 𝑓2 gets dampened out by the rotation, and the amount
of dampening increases with 𝑔, which is the period of 𝑟𝑔.
Penner shows that if 𝑓2 and 𝑟𝑔 are chosen very carefully,
then the stretch factor of 𝑓𝑔 is approximately 𝜆/𝑔, as de-
sired.

Because of Penner’s theorem, we have the following
notion of smallness for a stretch factor. We fix a num-
ber 𝐿 and say that a stretch factor 𝜆 for a pseudo-Anosov
𝑓 ∶ 𝑆𝑔 → 𝑆𝑔 is small if

log 𝜆 ≤ 𝐿/𝑔.
By Penner’s theorem, there are small stretch factors for ev-
ery 𝑔 as long as 𝐿 is greater than or equal to the constant 𝐶
in his theorem.

In the remainder of this article we focus on the question:

What do the small-stretch pseudo-Anosov maps look
like, and where do we find them?

We approach this question from the three perspectives on,
or three faces of, pseudo-Anosov maps given above.

Connections to Number Theory: Lehmer’s and
Fried’s Problems
Fried proved that the stretch factor 𝜆 for a pseudo-Anosov
map is always a bi-Perron unit: it is the root of a monic,
integer polynomial, and each algebraic conjugate of 𝜆 is
either equal to 1/𝜆 or has modulus in (1/𝜆, 𝜆). Fried then
posed the following problem: show that every bi-Perron
unit is the stretch factor of a pseudo-Anosov map [Fri85].
It would be remarkable if there was such a strong connec-
tion between this number theoretic property of real num-
bers and the topological property of being a stretch factor.

As of this writing, Fried’s problem is wide open, and
there is no convincing evidence either way (Fried consid-
ered other basic number theoretic properties, and could
not find any more restrictions). The problem is hard be-
cause there is no straightforward bridge between the num-
ber theory and the topology and no conspicuous place to
look for counterexamples.

As for the problem of understanding the smallest
stretch factors, there is a famous analogue in number

theory. TheMahlermeasure of a polynomial is the product
of the absolute values of the roots that lie outside the unit
circle. Lehmer’s problem (or conjecture) is to show that
the set of Mahler measures of monic, integer polynomials
is bounded away from 1 and further that theminimal such
Mahler measure is attained by Lehmer’s polynomial

𝑥10 + 𝑥9 − 𝑥7 − 𝑥6 − 𝑥5 − 𝑥4 − 𝑥3 + 𝑥 + 1.
The Mahler measure of Lehmer’s polynomial is 𝜇 ≈
1.17628. Lehmer’s problem has been open since his 1933
paper.

Lehmer’s polynomial appears elsewhere, for instance
in Reidemeister’s 1927 manuscript [Rei27] as the Alexan-
der polynomial of the (−2, 3, 7)-pretzel knot. For a vari-
ety of other connections between Lehmer’s problem and
topology, see the papers by Silver–Williams [SW07] and
by Leininger [Lei04].

Face 1: Small Stretch Factors and the Mapping
Class Group
By work of Dehn and Lickorish, eachMCG(𝑆𝑔) is normally
generated by a single element [FM12, Theorem 4.1]. This
means for each 𝑔 there is a single element 𝑓 ∈ MCG(𝑆𝑔) so
that each element of MCG(𝑆𝑔) is a product of conjugates
of 𝑓. The specific element given by Lickorish is known as
a Dehn twist.

As in linear algebra, we think of conjugate group ele-
ments as acting in the same way, just under different sets
of coordinates. So we can think of this theorem as saying
that there is one type of “move” that allows us to obtain
all symmetries of a surface. This is a familiar notion. For
instance the fact that the symmetric group Σ𝑛 is generated
by transpositions and the fact that the special linear group
SL𝑛(ℤ) is generated by primitive elementary matrices (ele-
mentarymatrices with a 1 off the diagonal) are instances of
this. Since transpositions are all conjugate in Σ𝑛 and prim-
itive elementary matrices are all conjugate in SL𝑛(ℤ), both
facts imply that Σ𝑛 and SL𝑛(ℤ) are normally generated by
a single group element.

Transpositions and elementary matrices are very simple
elements: transpositions fix 𝑛−2 elements of {1, … , 𝑛}, and
elementary matrices fix a codimension 1 subspace of ℝ𝑛.
Similarly, a Dehn twist in 𝑆𝑔 is the identity outside of an
annulus in 𝑆𝑔 (the smallest essential subsurface). While
it is perhaps not surprising that such simple elements are
normal generators, the following question of D. D. Long
is more intriguing:

DoesMCG(𝑆𝑔) have a normal generator that is pseudo-
Anosov?

Long answered in the affirmative for 𝑔 = 1, but his ques-
tion was open since 1986 for 𝑔 ≥ 2. To get a sense for
why this is difficult, try to determine if 𝐵 = ( 25 −29

19 −22 ) is a
normal generator for SL2(ℤ). To put it another way, it is
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natural that the usual row operations (or elementary ma-
trices) suffice to reduce matrices, but much less natural to
understand if the complicated “row operations” given by
𝐵 suffice.

With Lanier, we answered Long’s question in the affir-
mative [LM22]. In fact we showed that there are many
pseudo-Anosov normal generators.

Theorem (Lanier–Margalit). If a pseudo-Anosov element of
MCG(𝑆𝑔) has stretch factor less than √2, then it is a normal
generator.

Our work builds on previous joint work with Farb and
Leininger [FLM08]. One restatement of the theorem is that
if a pseudo-Anosov map has small stretch factor, then it
lies outside every proper, normal subgroup ofMCG(𝑆𝑔) (a
normal subgroup contains the normal closures of each of
its elements).

Themapping class group is rich with interesting normal
subgroups, some of which are named in Figure 13. The
small stretch pseudo-Anosov maps lie outside all of them,
as caricaturized in the figure.

Figure 13. A cartoon of the mapping class group, with the
small-stretch pseudo-Anosov maps shown as green dots.

This gives a first answer to our motivating problem of
understanding the nature of small-stretch pseudo-Anosov
maps. This answer even applies to the set of pseudo-
Anosov maps with log 𝜆 ≤ 𝐿. For the second and third
faces we use the stronger assumption log 𝜆 ≤ 𝐿/𝑔.

Face 2: Small Stretch Factors and 3-Manifolds
We now turn our attention to the 3-manifold perspective.
The starting point is the following fact: there are examples
ofmapping classes 𝑓 ∈ MCG(𝑆2) and ℎ ∈ MCG(𝑆3) so that
the mapping tori𝑀𝑓 and𝑀ℎ are homeomorphic. Said an-
other way, there is a single 3-manifold that can be realized
as a mapping torus in two very different ways.

While this may seem counterintuitive at first, we can
gain insight by subtracting two dimensions. To any el-
ement 𝜎 of the symmetric group Σ𝑛 we may make a

mapping torus: we multiply the discrete set {1, … , 𝑛} by the
interval [0, 1], which gives a disjoint union of 𝑛 intervals,
and thenwe glue the ends together according to 𝜎. The end
result is a disjoint union of circles, the number of circles
being the number of cycles in the cycle decomposition for
𝜎. From this, we see that we may write the circle as a map-
ping torus for elements of different permutation groups.
The phenomenon in the previous paragraph is simply a
higher dimensional analogue.

As in the symmetric group case, we can often realize a
single 3-manifold as a mapping torus in infinitely many
ways, with underlying surfaces of infinitely many different
genera. As mentioned, a deep theorem of Thurston says
that a mapping torus is hyperbolic if and only if the gluing
map is pseudo-Anosov. Thus, if one of the gluing maps for
a mapping torus is pseudo-Anosov, all of them are. In this
way, we obtain infinitely many pseudo-Anosov maps, on
surfaces of different genera, from a single pseudo-Anosov
map.

Even better, McMullen [McM00] showed how to use
work of Fried to obtain Penner’s asymptotics this way. That
is, from a single hyperbolic mapping torus, one can find
a sequence of pseudo-Anosov maps 𝑓𝑖 ∈ MCG(𝑆𝑔𝑖 ) (as in
the previous paragraph) with the 𝑔𝑖 tending to infinity, and
the logs of the stretch factors of the 𝑓𝑖 bounded above by
𝐶/𝑔𝑖.

From this starting point, Farb, Leininger, and the author
set out to study the set of small-stretch pseudo-Anosov
maps from the 3-manifold perspective. Here, we con-
sider the set of pseudo-Anosov maps on all 𝑆𝑔 with log 𝜆
bounded above by 𝐿/𝑔 for some fixed 𝐿. We denote this
set by Ψ𝐿.

Our first hope was the set of mapping tori

Ω𝐿 = {𝑀𝑓 ∶ 𝑓 ∈ Ψ𝐿}

was finite. This would be a sort of converse to McMullen’s
construction: not only does a single mapping torus give
Penner’s asymptotics, but all sequences of mapping classes
realizing Penner’s asymptotics in turn give a single, or at
least finitely many, mapping tori.

Unfortunately, this is not true, and there is an imme-
diate obstruction. When we make a mapping torus from
a pseudo-Anosov map 𝑓, the foliations on the surface give
rise to 2-dimensional foliations of𝑀𝑓. The infinitelymany
pseudo-Anosov maps giving 𝑀𝑓 all give the same folia-
tions of 𝑀𝑓. The degrees of the singularities for the foli-
ations for 𝑓 are the same as the degrees of the singulari-
ties in𝑀𝑓. But Penner’s examples of small-stretch pseudo-
Anosov maps have more and more singularities as 𝑔 in-
creases (there are singularities at the two fixed points of
the rotation 𝑟𝑔 in Figure 12, each with degree 𝑔).

With Farb and Leininger we proved that this is the only
thing that goes wrong with our initial hope [FLM11]. More
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Figure 14. A cartoon of the infinite world of mapping tori, with
the small-stretch pseudo-Anosov maps occurring in the finite
set encircled by the green loop.

precisely, letΨ∘
𝑓 be the set of pseudo-Anosovmaps of punc-

tured surfaces obtained by deleting the singularities of ele-
ments of Ψ𝑓.
Theorem (Farb–Leininger–Margalit). The set of (non-
compact) 3-manifolds

Ω∘
𝐿 = {𝑀𝑓 ∶ 𝑓 ∈ Ψ∘

𝐿}
is finite.

In other words, up to adding and deleting finitely many
singular points, the set of small-stretch pseudo-Anosov
maps all come from a finite set of 3-manifolds. Figure 14
gives a caricature.

It is an open problem to determine the cardinality of
Ω∘
𝐿. Is it ever 1?

The Symmetry Conjecture
With Farb and Leininger we formulated a conjecture that
suggests a different way to describe the pseudo-Anosov
maps with small stretch factor. In the statement, a par-
tial pseudo-Anosov map 𝑓 ∶ 𝑆𝑔 → 𝑆𝑔 is a map supported
on a subsurface 𝑅 and so that the restriction 𝑓|𝑅 is pseudo-
Anosov (such as 𝑓2 above).

Conjecture (Farb–Leininger–Margalit). There is a function
𝜉 = 𝜉(𝐿), independent of 𝑔, with the following property. If 𝑓 ∶
𝑆𝑔 → 𝑆𝑔 lies in Ψ𝐿, then 𝑓 is the composition 𝜌 ∘ ℎ where 𝜌 ∈
MCG(𝑆𝑔) is periodic and ℎ ∈ MCG(𝑆𝑔) is a partial pseudo-
Anosov element whose support 𝑅 satisfies |𝜒(𝑅)| ≤ 𝜉(𝐿).

In short, the conjecture says that a pseudo-Anosov map
with small stretch factor is the product of a “small” par-
tial pseudo-Anosovmapwith a rotation. The foliations for
such a pseudo-Anosov map will have symmetry. Hence we
refer to this as the symmetry conjecture.

In the same sense that our theorem is a converse to
McMullen’s construction of small-stretch pseudo-Anosov
maps, we may think of the symmetry conjecture as a

converse to Penner’s construction: it suggests that not
only does his construction give pseudo-Anosov maps with
small stretch factor, his construction (or a version of it)
gives all of them.

Face 3: Small Stretch Factors and Moduli Space
Finally, where do we find small-stretch pseudo-Anosov
maps in moduli space? More precisely, where do the cor-
responding loops in moduli space lie?

Earlier we mentioned the thin part of moduli space. A
measure of the thin-ness of a point in ℳ(𝑆) is the supre-
mumof themoduli of embedded annuli. Here an annulus
is a subset of 𝑆 that is biholomorphic to a standard annu-
lus {𝑧 ∶ 1 ≤ |𝑧| ≤ 𝑟}, and the modulus is then defined
to be log 𝑟. Every complex structure on 𝑆 corresponds to a
hyperbolic metric on 𝑆, and an annulus of large modulus
in the complex structure corresponds to a curve with small
length in the hyperbolic metric (hence the term “thin”).

For 𝑋 ∈ ℳ(𝑆) let 𝜇(𝑋) denote the supremum of the
moduli of embedded annuli in 𝑋 . For any closed interval
[𝜖1, 𝜖2] ⊆ (0,∞) we define

ℳ[𝜖1,𝜖2](𝑆) = {𝑋 ∈ ℳ(𝑆) ∶ 𝜇(𝑋) ∈ [𝜖1, 𝜖2]}.
We may refer to this as the not-too-thin/not-too-thick part
of moduli space.

As above, a pseudo-Anosov 𝑓 ∈ MCG(𝑆) corresponds
to a loop 𝛾𝑓 ⊆ ℳ(𝑆). We again let Ψ𝐿 denote the set of
pseudo-Anosov maps 𝑓 with log 𝜆 ≤ 𝐿/𝑔. With Leininger,
we proved the following theorem [LM13].

Theorem (Leininger–Margalit). Given 𝐿, there exists 𝜖1 =
𝜖1(𝐿) and 𝜖2 = 𝜖2(𝐿) so that

𝑓 ∈ Ψ𝐿 ⇒ 𝛾𝑓 ⊆ ℳ[𝜖1,𝜖2](𝑆).
We emphasize that the 𝜖𝑖 are independent of 𝑔. Our

caricature of the theorem is in Figure 15.

Figure 15. A cartoon of moduli space, with the locations of the
small-stretch pseudo-Anosov maps (or, the corresponding
loops) indicated by green dots.

Back to Mirzakhani
The set Ψ𝐿 contains subsets Ψ𝐿,𝑔 consisting of the small-
stretch pseudo-Anosov maps 𝑆𝑔 → 𝑆𝑔. In our work with
Leininger from the previous section, we obtained a further

MAY 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 747



result: if we fix 𝐿 and let 𝑔 vary, the cardinality of Ψ𝐿,𝑔 be-
haves like a polynomial in 𝑔 (for the precise statements, see
Theorems 1.2 and 1.3 in that paper). As mentioned above,
the elements of Ψ𝐿,𝑔 correspond to the loops of length at
most 𝐿 in ℳ(𝑆𝑔). In that sense, this gives a count of short
curves in the spirit of Mirzakhani’s theorem about short
curves on a surface.

In Mirzakhani’s theorem the variable 𝑔 is fixed and 𝐿
varies. And so a more direct analogue of that theorem
would be a count of Ψ𝐿,𝑔 for fixed 𝑔 and varying 𝐿. Fit-
tingly, the more direct analogue was given by Mirzakhani
herself, in joint work with her collaborators. Expanding
on work of Veech, Eskin and Mirzakhani proved the fol-
lowing [EM11].

Theorem (Eskin–Mirzakhani). For fixed 𝑔 and varying 𝐿 the
cardinality of Ψ𝐿,𝑔 grows exponentially in 𝐿. In particular it is
asymptotic to

𝑒(6𝑔−6)𝐿
(6𝑔 − 6)𝐿 .

Since Ψ𝐿,𝑔 contains all loops in moduli space of length
at most 𝐿, we might think of this theorem as being more
analogous to the fact that the number of curves in 𝑆𝑔 of
length at most 𝐿 grows exponentially in 𝐿. With Eskin
and Rafi, Mirzakhani proved that the number of loops of
length at most 𝐿 and of a certain topological type (lying in
a certain stratum of moduli space) is also exponential in
𝐿, but with smaller exponent [EMR19]. This is a striking
analogue of Mirzakhani’s theorem about short curves in
surfaces.

Epilogue
We study pseudo-Anosov maps with small stretch factor
because they are precious stones. They are beautiful in
a similar way to the way we think of the golden ratio as
being so. This beauty does not come from the decimal
expansion of the golden ratio, but from its various, inter-
connected descriptions in terms of golden rectangles, its
algebraic formula 𝑥2 = 𝑥 + 1, and its continued fraction
expansion, to name a few. Like the golden ratio, pseudo-
Anosov maps and their stretch factors are gems, wonderful
to visualize and contemplate.

Even from the small fragment of her work discussed
in this article, we can see that Maryam Mirzakhani’s life’s
work is a gem mine. And from the small amount of time
I spent with her, I also know that Maryam was a gem of a
person, radiating with positive energy, scientific curiosity,
and mathematical ideas. Her grace in the most difficult
of circumstances fills me with admiration and apprecia-
tion. May her memory continue to be a blessing, and may
her work continue to be an inspiration for generations to
come.
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