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1 Introduction

In the theory of mapping class groups, “curve complexes” assume a role sim-
ilar to the one that buildings play in the theory of linear groups: Ivanov,
Korkmaz, and Luo showed that the automorphism group of the curve com-
plex for a surface is generally isomorphic to the extended mapping class group
of the surface. In this paper, we show that the same is true for the pants
complex.

Throughout, S will be an orientable surface whose Euler characteristic
x(S) is negative, while X, , will denote a surface of genus g with b boundary
components. Also, Mod(S) will mean the extended mapping class group of S
(the group of homotopy classes of self-homeomorphisms of S).

The pants complex of S, denoted Cp(S), has vertices representing pants
decompositions of S, edges connecting vertices whose pants decompositions
differ by an elementary move, and 2-cells representing certain relations be-
tween elementary moves (see Section 2). Its 1-skeleton C}(S) is called the
pants graph, and was introduced by Hatcher-Thurston. We give a detailed
definition of the pants complex in Section 2.

Brock proved that C4(S) models the Teichmiiller space endowed with the
Weil-Petersson metric, 7w p(S), in that the spaces are quasi-isometric [1].
Our results further indicate that C5(S) is the “right” combinatorial model
for Twp(S), in that Aut CL(S) (the group of simplicial automorphisms of
Cp(S)) is shown to be Mod(S). This is in consonance with the result of
Masur-Wolf that the isometry group of Twp(S) is Mod(S) [10].

There is a natural action of Mod(S) on C(S); we prove that all auto-
morphisms of C5(S) are induced by Mod(S). The results of this paper can



be summarized as follows:
Aut Cp(S) = Aut C%,(S) =~ Mod(S)
for most surfaces S.

Theorem 1. If S # Y3 is an orientable surface with x(S) < 0, and
6 : Mod(S) — Aut Cp(S) is the natural map, then:

- 0 1s surjective.

. ker(ﬁ) = Z2 fO?" S € {2171,21’2,22,0}, ker(@) = ZQ D Z2 fO'I"
S = 34, and ker(0) is trivial otherwise.

In short, Theorem 1 says that the natural map f is an isomorphism for
most S. The nontrivial kernels in Theorem 1 are generated by hyperelliptic
involutions [8]. Note that Cp (X, 3) is empty.

Theorem 2. If S is an orientable surface with x(S) < 0, then:
Aut Cp(S) = Aut C5(S)

In terms of simplicial automorphisms, Theorem 2 says that the pants complex
carries no more information than its 1-skeleton.

In order to prove Theorem 1, we apply the corresponding theorem for a
different simplicial complex, the curve complex:

Theorem 3 (Ivanov, Korkmaz, Luo). If S # X3 is an orientable surface
with x(S) <0, and n : Mod(S) — Aut C(S) is the natural map, then:

- 1 48 surjective when S # X1 9

. ker(n) = Z2 fO'I" S e {21’1,21’2,2270}, ker(n) = Z2 ©® Z2 fO'I"
S = X4, and ker(n) is trivial otherwise.

- Im(n) = Aut* C(S) S Aut C(S) when S = X 5.

In the theorem, C(S) is the curve complex for S (defined in Section 2), and
Aut* C(S) is the subgroup of Aut C(S) which preserves the set of vertices of
C(S) representing nonseparating curves. The surjectivity statement implies

that Aut C(S) is the same as Aut*C(S) for S # X;,. The reason X, is
exceptional is that it has a hyperelliptic involution p with the property that

2



the projection X9 — 319/(p) ~ Xy is bijective on curve complexes, but
Mod(%;2)/ ker(n) 2 Mod (o).

Theorem 3 for S # 3 5 is originally due to Ivanov for high genus [6] and
Korkmaz for low genus [7]. Luo gave a new proof for all genera, and also
settled the case of S =X, [8].

Theorem 1 is a refinement of Theorem 3 for two reasons. Firstly, C5(S)
is a thin subcomplex of the dual of C(S), so a priori it has more automor-
phisms. Also, there are no exceptional cases to the surjectivity statement in
Theorem 1.

The key idea for the proof of Theorem 1 is that there is a correlation
between marked Farey graphs in CL(S) and vertices in C(S). An automor-
phism of C}(S) induces a permutation of these Farey graphs, and hence gives
rise to an automorphism of C(S), at which point Theorem 3 applies.

Theorem 2 actually follows from Theorem 1. However, we give an inde-
pendent, elementary proof in Section 4. We show that the 2-cells of Cp(S),
which are defined via topological relationships on S, can equivalently be char-
acterized using only the combinatorics of CL(S). For example, square 2-cells
of Cp(S) are originally defined as a commutator of two moves on disjoint
subsurfaces on S (see Figure 4). We prove that square 2-cells can equiva-
lently be defined as loops with 4 edges in Ci(S) which have the property
that consecutive edges do not lie in a common Farey graph. Note that in
the second definition there is no reference to S, only CL(S). Therefore, any
automorphism of C}(S) must preserve these square 2-cells of Cp(S).

Acknowledgements. The author would like to thank Benson Farb for
suggesting and discussing the problem, as well as Jeff Brock, Kevin Wortman,
and Feng Luo for enlightening conversations. The referee has been extremely
helpful with many aspects of the paper.

This work is dedicated in loving memory of my mother, Batya.

2 The complexes

2.1 Curve complex

Curves. A simple closed curve on S (homeomorphic embedding of the
circle) is nontrivial if it is essential (not null homotopic) and non-peripheral



(not homotopic to a boundary component). Throughout, we will use curve
to mean homotopy class of simple closed curves.

Any mention of intersection between two curves o and S will refer to the
geometric intersection number i(c, 5) (the minimum number of intersection
points between two representative curves of the respective homotopy classes).

Curve complex. The curve complez of S is an abstract simplicial complex
denoted C(S) with vertices corresponding to nontrivial (homotopy classes of
simple closed) curves on S.

A set of k£ + 1 vertices is the 0-skeleton of a k-simplex in C(S) if there
are representative curves from the corresponding curve classes which are
simultaneously disjoint. For example, edges correspond to pairs of disjoint
curves.

It is a standard fact that if a set of homotopy classes of curves have
pairwise intersection number zero then there is a single set of representative
curves which are simultaneously disjoint. In other words, every complete
graph on k+1 vertices in C(5) is the 1-skeleton of a k-simplex in C(S). One
way to see this is to fix a hyperbolic metric on S and take the representative
curves to be the unique geodesics in each homotopy class.

The curve complex was first defined by Harvey [3]. Harer proved that it
is homotopy equivalent to a wedge of spheres [2]. Ivanov used the theorem
that Aut C(S) = Mod(S) to give a new proof of Royden’s theorem that
Isom(7(S)) = Mod(S) (where T(S) is the Teichmiiller space of S with the
Teichmiiller metric) [6]. Masur-Minsky showed that C(S) is 6-hyperbolic [9].

The curve complex has an altered definition in two cases. For ¥, and
Y11, since there is no pair of distinct simple closed curves with intersection
number zero, two vertices are connected by an edge when the curves they
represent have minimal intersection (2 in the case of ¥4, and 1 in the case
of ¥11). It turns out that in both cases, the curve complex is a modular
configuration, or Farey graph (see Figure 1) [11].

2.2 Pants complex

Pants decompositions. A pants decomposition of S is a maximal collec-
tion of distinct nontrivial simple closed curves on S which have pairwise
intersection number zero. In other words, pants decompositions correspond
to maximal simplices of the curve complex. A pants decomposition always
consists of 3g — 3+ b curves (where S = X,4). The complement in S of the
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Figure 1: A Farey graph.

curves of a pants decomposition is 2g — 2 + b thrice punctured spheres, or
pairs of pants. A pants decomposition is written as {ay, ..., a,}, where the
«; are curves on S.

Elementary moves. Two pants decompositions p and p' of S differ by an
elementary move if p' can be obtained from p by replacing one curve in p, say
oy, with another curve, say o}, such that «; and o) intersect minimally. If
oy lies on a Xy 4 in the complement of the other curves in p, then minimally
means i(oy, o) = 2; if o; lies on a ¥;; in the complement of the rest of p,
then we want i(ay,}) = 1. These are the only possibilities, corresponding
to whether a; is the boundary between two pairs of pants on S or is in a
single pair of pants.

An elementary move will be denoted {aq,...,a,} = {a}, ao,...,an}, or
a3 — of. Note that there are countably many elementary moves a; — *.

Pants graph. The pants graph of S, denoted C5(S), is the abstract sim-
plicial complex with vertices corresponding to pants decompositions of S,
and edges joining vertices whose associated pants decompositions differ by
an elementary move.

Note that the pants graphs for ¥4 and ¥, ; have the same definitions
as (the 1-skeletons of) the curve complexes for these surfaces—all four are



Figure 2: Elementary moves between pants decompositions.

Farey graphs.

Pants complex. The pants complez of S, denoted Cp(S), has CL(S) as
its 1-skeleton, and also has 2-cells representing specific relations between
elementary moves which are given by topological data on S, as depicted in
Figures 3-6.

The pants complex was first introduced by Hatcher-Thurston as a tool
for constructing a finite presentation of Mod(S) [5]. Hatcher-Lochak-Schneps
gave the pants complex its present form, and in particular showed that it is
connected and simply connected [4].

RV TV

Figure 3: Triangular 2-cells in the pants complex.
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Figure 4: Square 2-cells in the pants complex (moves can be of either type).
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3 Proof of Theorem 1

Let S = ¥, (# Xo3) be an orientable surface with x(S) < 0, and let
n =39 — 3 + b be the number of curves in a pants decomposition of S.

Outline. The idea for the proof of Theorem 1 is to construct an isomor-
phism ¢ so that the following diagram commutes:

Mod(S) ——= Mod(S) —— Mod(S5)

g ! 5

Aut Cp(S) —— AutCL(S) —2— Aut C(S)

The surjectivity of 6 (Theorem 1) then follows from the surjectivity of n
(Theorem 3) and the injectivity of the natural map ¢. Note that ¢ must also
be surjective, so ¢ is an isomorphism (Theorem 2). The description of ker(f)
(Theorem 1) also follows from Theorem 3.

For the case S = ¥ 9, a separate argument will be needed to show that
image(¢) C image(n) = Aut* C(S) (Section 5).

In order to construct ¢, we will develop the following natural surjective
map:

{abstract marked Farey graphs in Cp(S)} — {vertices of C(9)}

Here, an abstract Farey graph is any subgraph of CL(S) abstractly iso-
morphic to a Farey graph; and a marked graph (F, X) is a graph F with a
distinguished vertex X.



Figure 5: Pentagonal 2-cells in the pants complex.

3.1 Definition of ¢

To begin, we completely characterize triangles in CL(S), since they are the
building blocks of Farey graphs. By triangle, we mean a subgraph of CL(S)
which is a complete graph on 3 vertices. The following lemma implies that
the three pants decompositions associated to the vertices of any triangle are
of the form {x, @, ..., .}

Lemma 1. Every triangle in Ch(S) is the boundary of a triangular 2-cell of
Cp(S).

Proof. Suppose P, @, and R are the vertices of a triangle in C§(S). Since
the pants decompositions associated to P and @ differ by an elementary
move, they must differ by exactly one curve. Say P and () are associated to
{a1,...,0,} and {a},as,...,0,}. A pants decomposition associated to R
must have exactly n — 1 curves in common with each of these, so it must in
fact contain aw, ..., a, (otherwise, it would have to contain o and o/, which
can’t happen since i(ay, @}) > 0. Hence R is associated to {of, as, ..., a,}
for some of.

The curves a1, o}, and of lie on a common subsurface S’ (either a ¥ ;
or a ¥o4) in the complement of {as,...,a,}. Thus the triangle PQR can



{a} a5} 7 {ay a3}

R S
(1,00 (=) o . (a} a
P U
{a, 0} (= —— ) {0y ay
o2

Figure 6: Hexagonal 2-cells in the pants complex.

be thought of as one of the triangles in Cp(S’), which correspond exactly to
triangular 2-cells.
U

By piecing triangles together, we can characterize Farey graphs in CL(S):

Lemma 2. There is a natural surjective map from the set of marked abstract
Farey graphs in CL(S) to the set of vertices of C(S).

Proof. Let (F,X) be a marked abstract Farey graph in Cp(S). Since F
is chain-connected (any two triangles can be connected by a sequence of
triangles so that consecutive triangles share an edge), and since the pants
decompositions associated to any triangle are of the form {of, as, ..., ay},
{a?,a,...,0,}, {03, s, ..., an}, it follows that there are n — 1 fized curves
(ag,...,a,) and one moving curve (the a’s) in the pants decompositions
associated to the vertices of F. The vertex X distinguishes one of the o}.
Hence, there is a unique vertex vz x) of C(S) corresponding to (F, X).

To show that the map defined above is surjective, we will now find a
marked Farey graph corresponding to a given vertex v of C(S). If v is asso-
ciated to the curve oy on S, then choose a vertex X of CL(S) associated to
some pants decomposition {1, @, ..., a,} containing «;. Since the comple-
ment of as, ..., @, in S is a number of pants and either a ¥ 4 or ¥ ;, the set
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of pants decompositions of the form {x, ay,...,a,} corresponds to a Farey
graph F, & Cp(Z04) = Cp(211) in Cp(S), (F,, X) corresponds to v. Note
that U(FU,X) = .

O

By a slight abuse of notation, we say that v x) corresponds to (F,X),
and vice versa (even though the map is not bijective).

Now that we have the correspondence of Lemma 2, we are ready to define
the map ¢.

Definition of ¢. Let A € Aut C5(S). We define ¢(A) : CV(S) — CO(S)
(and hence ¢) by way of saying what ¢(A) does to each vertex of C(S5):

If v is a vertex of C(S) and (F,, X) is some marked Farey graph in C5(S)
corresponding to v (recall that there is a choice here), then ¢(A)(v) is defined

to be v(a(r,),a(x)); the unique vertex of C(S) corresponding to the marked
Farey graph (A(F,), A(X)).

3.2 ¢ is well-defined

In order to show that ¢ is well-defined, we will require two new concepts:
alternating sequences and small circuits.

Circuits. A circuit is a subgraph of C5(S) homeomorphic to a circle. We
define triangles, squares, pentagons, and hexagons to be circuits with the
appropriate number of vertices.

For the definition of alternating below, note that an edge of Ci(S) lies in
a unique Farey graph in C5(S). This fact follows from the proof of Lemma 2.

Alternating sequences. A sequence of consecutive vertices PP, ... P,
in a circuit is called alternating if the unique Farey graph containing the
edge P,_1 P, is not the same as the unique Farey graph containing P, P, for
1 <4 < m. By Lemma 2, an equivalent characterization of alternating is
that the pants decompositions associated to F;_;, P;, and P;;; have no set
of n — 1 curves in common.

A useful working definition of an alternating sequence of vertices PQR
is that if the elementary move corresponding to PQ is x — «, then the
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elementary move corresponding to QR is not of the form o — %. A circuit
in C}(S) with the property that any three consecutive vertices make up an
alternating sequence is called an alternating circuat.

Since alternating sequences are defined in terms of the combinatorics of
CL(S), we have:

Lemma 3. Automorphisms of CL(S) preserve alternating sequences.

Small circuits. A small circuit in C5(S) is a circuit with no more than six
edges. We give a partial characterization which will be used to show that
the map ¢ is well-defined, and to prove the results in Section 4.

A 2-curve small circuit is a circuit with the property that the pants de-
compositions associated to its vertices all contain the same set of n—2 curves;
i.e. they are of the form {x,x,as,...,a,}. For convenience, small circuits
which are subgraphs of Farey graphs are also called 2-curve small circuits
(by Lemma 2 they are really “l-curve small circuits”).

Lemma 4. Any small circuit which is not a 2-curve small circuit is an
alternating hexagon.

Proof. Let L be the small circuit, and say one of its vertices is associated to
the pants decomposition p = {ay, ay, ..., a,}. Since L is not a 2-curve small
circuit, then (after picking a direction around £) there must be three edges
of £ corresponding to moves of the form o; — %, a; — *, and oy, — * with
1 <4,7,k < n distinct. Without loss of generality, we have:

o B wBa, a2

In order to make L a closed loop, there must also be three edges of the

form: , , ,
*gal *Tigafg *Tiia’g

Note that these 6 moves are distinct. In other words, «; is not o for any
j. This is true because i(a}, ;) > 0 (they differ by an elementary move),
while i(cy, ;) = 0 (they both appear in the pants decomposition p). Since
L is a small circuit, there are no further edges.

Further, we claim that each m/ is given by o} — ;. If, on the contrary,
we have for example that m} is of, — a1, then i(ad, ap) > 0 and i(a, ay) > 0
(it differs from both by an elementary move). Thus, among the set of curves
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{aq,a), a9, 3,04}, o)) can only appear in a pants decomposition with of,
as, of. So the only possibilities for m/ are:

7

{aIQ: alla 013} ﬂ) {Ofl; 0/17 O53}
ml

{0/2: alla ag} — {ala alla ag}

m/
{aIZ: ag, (1/3} —1) {ala 04{9,, (1/3}

which are all impossibilities since they each contain a pair a; and o}, but

i(a;,af) > 0. (Note that we ignore the curves au,...,a,, as they must

K
appear in each pants decomposition.)
Now £ must be alternating, because otherwise it has a pair of consecutive
edges corresponding to m; and m;.

O
An immediate consequence of Lemmas 3 and 4 is the following:

Lemma 5. If A € AutCL(S), and L is a small circuit which is not an
alternating hexagon, then A(L) is a 2-curve small circuit.

Lemma 6. The map ¢ : Aut Cp(S) — Aut C(S) is well-defined.

Proof. Let v be a vertex in C(S) associated to the curve oy on S. We need
to show that if p and p' are two pants decompositions which give rise to two
marked Farey graphs (F,, X) and (F}, X') corresponding to v, then the two
vertices of C(S) corresponding to (A(F), A(X)) and (A(F)), A(X")) are the
same.

Actually, by the connectedness of CL(S — 1), we only need to treat the
case when p and p’ differ by an elementary move, say as — of.

The idea is as follows: we will find a 2-curve small circuit £ (not an
alternating hexagon) such that four of its vertices make up an alternating
sequence WX X'Y, with W, X € (F,, X) and X", Y € (F], X') (see Figure 7).

Suppose (A(F,), A(X)) corresponds to a vertex of C(S) representing
to the curve f§; and that A(X) is associated to the pants decomposition
{B1,...,Bn}. We show that (A(F]), A(X')) also corresponds to the vertex
representing to [;:

Since the edge A(W)A(X) isin (A(F,), A(X)), it corresponds to a move of
the form x — f;. As A(W)A(X)A(X') is alternating (Lemma 3), A(X)A(X")
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Y

Figure 7: The 2-curve small circuit L.

corresponds to a move f; — . Now, combining the facts that A(X)A(X")A(Y)
is alternating (Lemma 3) and that A(L) is a 2-curve small circuit (Lemma 5),
it follows that the move corresponding to A(X')A(Y) is of the form 8, — x,
and so the vertex of C(S) corresponding to (A(F)), A(X")) represents f.

Finding the 2-curve small circuit. To show that ¢ is well-defined, the only
thing left is to show that there always exists a 2-curve small circuit £ as
above. There are four cases to consider:

a1, ap lie on disjoint subsurfaces

o, ay lie on a g5

aq, ag lie on a X 5, and one of oy, o, or o, is separating
oy, lie on a Xy 5, and g, ay, and o are nonseparating

Ll

Note that a curve is separating on ¥, C S if an only if it is separating
onS.

Case 1: Let £ be the boundary of a square 2-cell containing X, X'.
Case 2: Let £ be the boundary of a pentagonal 2-cell containing X, X".

Case 3: There are only three possibilities for the curves a;, o, and o,
since a pants decomposition of ;5 can’t have two separating curves, and
two separating curves on X o can’t differ by an elementary move:

- @ is separating, as and o, are nonseparating

- a1 and s are nonseparating, and o, is separating
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- @ is nonseparating, s is separating, and o, is nonseparating

Note that the second and third possibilities are equivalent by symmetry.

In any case, choose £ to be the boundary of a hexagonal 2-cell. For the
first possibility choose £ so that X and X’ correspond to the vertices 7" and
U in Figure 6. For the second possibility, X and X’ should correspond to S
and 7'

Case 4: Since this situation does not occur in any of the circuits bounding
2-cells of Cp(S), we reduce to Case 3 by showing that any elementary move
on a X o of the form {oy, a2} — {1, 04} with oy, oy, and o} all nonsepa-
rating can be realized by a pair of elementary moves {ay,as} — {ay, 0} —
{a1, a4} which fall under Case 3.

Topologically, a; and s are as in Figure 8 (the complement of a pair of
nonseparating curves on X5 is two copies of ¥y 3, each with one boundary
component of the ¥;5) . Then, there is one topological possibility for a4,
as as differs from ay by an elementary move on ¥y4 = 312 — oy, and the
two boundary components of ¥;, lie on different sides of o (recall o in
nonseparating). Thus «f is also as in Figure 8. Therefore, we may choose o
as in the same figure.

La, @2

Figure 8: Reduction of Case 4 to Case 3.

3.3 ¢ maps into Aut C(S5)

Since C(S) has the property that every set of k& + 1 mutually connected ver-
tices is the 1-skeleton of a k-simplex in C(S), it follows that Aut C(S) =
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Aut C'(S). Therefore, we only need to check that ¢(A) extends to an auto-
morphism of the 1-skeleton of C(S), i.e. that ¢(A) takes vertices connected
by edges to vertices connected by edges.

Suppose that v and w are vertices of C(S) associated to curves « and 3
on S, and let X (a vertex of C}(S)) correspond to some pants decomposition
{a, 8,73, -,7}- Then let F, and F,, be the Farey graphs corresponding
to the pants decompositions {*, 3,73, -..,7n} and {a,*,73,.-.,Va}- In this
case, (Fy,, X) and (F,, X) are marked Farey graphs corresponding to v and
w, and which intersect at one vertex (X). Note that this construction is
possible if and only if o and S appear in a common pants decomposition,
which is equivalent to the existence of an edge between v and w. Since
intersections between Farey graphs are strictly preserved under A, and since
¢(A) is independent of choice of marked Farey graph, it follows that edges
of C(S) are preserved under ¢(A).

3.4 ¢ is an isomorphism

Multiplicativity. Let A, B € Aut CL(S). We will show that ¢(AB)v =
#(A)p(B)v for any vertex v in C(S). By definition, ¢(AB)v is the vertex in
C(S) corresponding to (AB(F,), AB(X)), where (F,, X) is a marked Farey
graph in Cp(S) corresponding to v. On the other hand, ¢(B)v is the vertex
w of C(S) corresponding to (B(F,), B(X)), and ¢(A)p(B)v is the vertex of
C(S) corresponding to (A(Fy), A(Y)), where (F,,Y) is some Farey graph
corresponding to w. We can choose (F,,Y) to be (B(F,), B(X)), and so
#(A)p(B)v is the vertex corresponding to (AB(F,), AB(X)), which is the
same as ¢(AB)v.

Surjectivity. It suffices to show that the diagram at the beginning of this
section is commutative. Let f € Mod(S), and let v be the vertex of C(S)
associated to a curve oy on S. Then ¢ oo 0(f)(v) = ¢ o &(f)(v) is the
vertex of C(S) corresponding to (f(F,), f(X)), where (F,, X) is a marked
Farey graph corresponding to v. But if F}, and X correspond to pants decom-
positions {*, ao, ..., a,} and {a,...,a,}, then f(F,) and f(X) correspond
to {x, faz),..., flan)} and {f(c),..., f(em)}. Thus (¢ or00)(f)(v) =
n(f)(v), the vertex of C(S) representing f(c).
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Injectivity. Suppose ¢(A) is the identity in Aut C(S) , and let X be the
vertex of CL(S) associated to the pants decomposition {ay,...,a,}, where
v1, ..., v, are the vertices of C(S) associated to the «;. Denote by F,, the
Farey graph corresponding to the pants decompositions:

{ala N PR T S EE PR Qn}

The (F,,, X) correspond to the v;, and the F,, all intersect at the vertex X
in CL(S).

Since A(Fy,), ..., A(F,,) must be marked Farey graphs corresponding to
{A(v;)} = {vi} for 1 < i < n and intersecting at one vertex, it follows that
their common intersection is X. Thus A(X) = X, and so A is the identity
in Aut C5(S).

4 Proof of Theorem 2

Our goal is now to show that it is possible to recognize the 2-cells of Cp(S)
simply by considering the combinatorics of CL(S), and without reference to
the surface S. This will give a complete proof of Theorem 2, and will help
prove Theorem 1 for the case S =X .

Again, S = 3, is an orientable surface with x(S) < 0, and n = 3g—3+b
is the number of curves in a pants decomposition for S. Recall that a circuit
is a subgraph of CL(S) homeomorphic to a circle, and that triangles, squares,
pentagons, and hexagons are circuits with the usual number of vertices.

Triangles. Lemma 1 says that every triangle in CL(S) is the boundary of
a triangular 2-cell in Cp(S).

Squares. We will show that square 2-cells in Cp(S) can equivalently be
characterized as alternating squares in Cp(S).

Lemma 7. Every alternating square in CL(S) is the boundary of a square
2-cell in Cp(S).

Proof. Let P, @, R and S be the (ordered) vertices of an alternating square
in C5(S). By Lemma 4, PQRS is a 2-curve small circuit, so the associated
pants decompositions all contain a common set of n—2 curves, say as, ..., a,
(which we take to be implicit below).
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Using the fact that PQRS is alternating, we have that the pattern of
curves is as follows:

P Q/ /R/ /S
{abO‘?} - {a1’a2} - {alaa2} - {alﬂo@}

Note that as must be in the pants decomposition for S since SP( is
alternating.

It remains to show that «; and «y lie on different subsurfaces in the
complement of as,...,q,, as per the definition of square 2-cells. Assume
that o and ay lie on a connected subsurface S C S —{as,...,a,}. Since S’
has a pants decomposition of two curves ({aq, as}), S’ is either X5 or ¥ 5.

There are four topological possibilities for oy, oy, and a4y—on the ¥j5
there is only one possibility, and on the ¥, there are two cases (Cases 3
and 4 of Lemma 6). It is clear that in each of the cases, there is no curve
o/ which intersects «; minimally and is disjoint from ay and of. This is a
contradiction, so «; and ay lie on different subsurfaces.

O

Pentagons. We now prove that pentagonal 2-cells in Cp(S) can be char-
acterized as alternating pentagons in C5(S).

Lemma 8. Every alternating pentagon in C(S) is the boundary of a pen-
tagonal 2-cell in Cp(S).

Proof. Let P, @, R, S, and T be the (ordered) vertices of an alternating
pentagon in C4(S). By Lemma 4, the pants decompositions associated to
these vertices all have n — 2 curves in common, say s, ..., a, (these curves
are implicit in the pants decompositions below).

Because PQRST is an alternating sequence, the pattern of curves in the
pants decompositions for those vertices is:

P Q ! /R ! ,S 17 r "
{011,012} — {alaaQ} — {alao*/Q} - {011,052} - {042,042

Note that ay must be in the pants decomposition for 7', since QPT is an
alternating sequence.

Since curves in a pants decomposition are disjoint, we have that for the
sequence oy o ao a4 s oy, curves differ by an elementary move if they are
adjacent in the sequence, and are disjoint otherwise. Our goal now is to show
that these curves must be the ones in Figure 5.
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Firstly, a; and ay do not lie on disjoint subsurfaces (o) has nontrivial
intersection with both of them). Therefore, o; and oy must lie on a ¥y 5 or
21’2 in S — {a3, ey O!n}.

In the first case, the curves ay, o, af, oy, and o) must be topologically as
in the definition of pentagonal 2-cells in the pants complex (Figure 5). This is
because aq, o, ag, o4 is a reqular chain (curves intersect twice if consecutive,
are disjoint otherwise), and regular chains are topologically unique. Then o
is the unique curve intersecting a; and « each twice in the complement of
the other curves.

We now show that the second case cannot happen, i.e. that there is no
such sequence curves on ¥ ,.

Assume that on ¥, there is a sequence a 8 v § € o with the property
that consecutive curves intersect minimally and other pairs are disjoint. In
such a sequence, there can be at most one curve which is separating on X o,
since two separating curves on X;, intersect at least four times. We will
consider two cases:

1. the sequence has a separating curve
2. the sequence has no separating curve

Below, we call a nonseparating curve on X, 5 of (p, q)-type if it is a (p, q)
curve on the torus obtained by forgetting the two punctures.

Case 1. Suppose there is a separating curve in the sequence, say «. It
follows that the other curves in the sequence are nonseparating and that
« separates X; o into a Y3 and a X;;. Since v and § both have trivial
intersection with o and have minimal intersection with each other in the
complement of «, they must lie on the 3;; and intersect once; say v and &
are of (1,0) and (0, 1)-type, respectively. As 8 and € are both nonseparating
curves on Y o, and i(3,0) = 0, § must be of (0, 1)-type; likewise ¢ must be of
(1,0)-type. This implies that i(5,€) > 0 (curves of different type intersect),
so we have a contradiction.

Case 2. Now suppose that all the curves in the sequence are nonsepa-
rating. Since all elementary moves involving three nonseparating curves are
topologically equivalent, we can assume without loss of generality that «, 7,
and ¢ are the curves in Figure 10.
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Figure 9: Case 1. The configuration for o separating.

Figure 10: Case 2. The configuration for o nonseparating.

In order to have i(3, ) = 2 and i(3,0) = 0, we must have that when S is
cut along o and 4, the two components of 5 are essential arcs on the two X 3
components of S — (« U ). However, it is easy to see that on each of these
components, any essential arc with endpoints on « must intersect (a piece
of) «y at least twice (in an essential way). Thus i(5,vy) > 4, a contradiction.

O

Hexagons. An almost-alternating hezagon in C5(S) is a hexagon with an
alternating sequence of 6 vertices, and a sequence of 3 vertices which lie on
a square in some Farey graph (and do not lie in a common triangle). Note
that the boundary of a hexagonal 2-cell is an almost-alternating hexagon.

Lemma 9. Every almost-alternating hexagon in Cp(S) is the boundary of a
hezagonal 2-cell in Cp(S).

Proof. Let P, Q, R, S, T, and U be (ordered) vertices of an almost-alternating
hexagon, where UPQ lie in a common Farey graph. Then the alternating
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sequence must be PQRSTU.

Since an almost-alternating hexagon is not an alternating hexagon, then
by Lemma 4, the pants decompositions associated to the vertices all have a
set of n — 2 curves in common, say «s, ..., a, (again, we ignore these curves
below).

As PQRSTU is alternating, we get the following pattern of curves for
the associated pants decompositions:

P IQ IR / IIS ! IIT " v n
{or, a0} = {a}, 0} = {o, 05} = {03, 05} — {03, 01} = {az, 07}

Note that the pants decomposition for U must have the curve as since
UPQ lies in a Farey graph.

The goal now is to show that the curves must be as the curves corre-
sponding to a hexagonal 2-cell (Figure 6). We take the following steps:

1. a1, ay do not lie on disjoint subsurfaces

2. a1,y do not lie on a Xy 5 (and hence they lie on a ¥ 5)

3. o is nonseparating on the X; 5

4. oy is nonseparating on the X o

5. o] (and hence «f) is separating on the 3 o

6. The choices of oy, o, of, ag, 0, oy on X 5 are topologically unique

Step 1. The curves o and as cannot lie on disjoint subsurfaces, since
there is a chain of curves connecting them which are disjoint from ag, .. ., ay,:

ap — o = ady = oy

Step 2. Assume o and o lie on a ¥y 5 in the complement of as, ..., a,.
Since P, Q, and U are the vertices of a square in a Farey graph, and ay
appears in all three associated pants decompositions, the aforementioned
Farey graph is C}(Xg4) where ¥y 4 = ¥ 5—as. Then since any two squares in
Ch(Xo,4) are topologically equivalent, it follows that the pants decompositions
associated to P, @, and U are as in Figure 11. (in the figure, a boundary
component is represented by a puncture, and a curve is represented by an
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Figure 11: Step 2. The configuration for a; and oy on a ¥y s.

arc; to recover the curve, take a boundary of a small neighborhood of the
arc).

The edges QR and UT (note directions) correspond to the elementary
moves s — o and as — . Since all elementary moves on Y, 5 are topo-
logically equivalent, both of, and o) must be represented by arcs which have
an endpoint at the puncture a (see Figure 11). This implies that i(a4, of) > 0.
This is a contradiction, since oy and o4 appear together in the pants decom-
position associated to S.

Step 3. If we assume «y is separating on ¥, o, then it separates ¥; » into
a Xo3 and a ¥y ;. Then {o}, {a}}, and {af} are pants decompositions
of the 31, whose associated vertices in Ch(X11) lie on a square (but not
a triangle). Topologically, then, o/, a1, and o} are the (1,0), (2,1), and
(1,1) curves on the 3 1, so they are of the same three types on the X, 5 (see
Lemma 8). Since « is separating, o and «f must both be nonseparating
(they must have intersection number with o no more than 2). Also, because
i(ahy, o)) = 0 (the two form a pants decomposition), it follows that of, must
be of type (1,1). Likewise, o must be of type (1,0). However, since o,
and o, must make up a pants decomposition of ¥ 5, they must have trivial
intersection; but curves of different type always have nontrivial intersection,
a contradiction.
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Step 4. Assume that o is separating on the X;,. Since all pants de-
compositions containing a separating curve are topologically equivalent, we
assume that oy and as are as in Figure 12.

&l

_\

aj aj
Figure 12: Step 4. The configuration for «; separating.

Now, there is a unique choice for of, as i(o}, @) = 2 and i(o), ag) = 0.
Since «f must be part of a square (but not a triangle) with the vertices of
Cp(Xo,4) associated to a; and o, the choice of of is topologically unique.

The curve of, must have trivial intersection with o/, and must differ from
both of and ay by elementary moves. By the same argument as in Case 2 of
Lemma 8, there is no such o, so we have a contradiction.

Step 5. Without loss of generality, a; and ay are the curves in Figure 13.
If we assume that o] is nonseparating on the 3 o, then since {ay, s} —
{a}, as} is an elementary move, the choice for o is topologically unique.

< >

7
9%
el

aya; Oy

1

Figure 13: Step 5. The configuration for for o/; nonseparating.

In order for o}, oy, and «f to lie on a square (but not a triangle) in the
Farey graph Cp(204) = Cp(S — aw), and for oy to differ from o} and of by
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elementary moves, we must have i(aq, o)) = i(aq, o) = 2, and (o}, &) = 4.
The only such configuration is shown in Figure 13.

Again, we must have i(a4, o)) = 0, and it o}, must differ from «of and oy
by elementary moves. By the same argument as in Case 2 of Lemma 8, there
is no such a5, and we have a contradiction.

Step 6. Starting with oy and oy (both nonseparating), we can assume that
they are as in Figure 14. As above, i(aq, o)) = i(aq,of) = 2, i(af, of) = 4,
and i(o}, as) = i(af,as) = 0. The only such topological configuration is
shown in Figure 14.

Figure 14: Step 6. The unique configuration for almost-alternating hexagons.

Finally, there are unique choices for of, and o4, as o, must have trivial in-
tersection with o and must have minimal intersection with oy and of, while
as must have trivial intersection with o and must have minimal intersection
with o and of.

O

Proof of Theorem 2. Lemmas 1, 7, 8, and 9 say that each kind of 2-cell in
CL(S) can be recognized completely in terms of the combinatorics of CL(S).
Therefore, Aut C5(S) and Aut Cp(S) are canonically isomorphic.

5 Theorem 1 for S =X

As stated in Theorem 3, the exceptional feature of 3, 5 is that the natural
map 7 : Mod(2;2) — Aut C(X; ) is not a surjection. More precisely, the
image of 7 is Aut* C(X; ), the subgroup of Aut C(X; 2) consisting of elements
which preserve the set of vertices associated to nonseparating curves on X .
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Therefore, the only added complication is to show that the image of ¢ (as
defined in Section 3.1) lies in Aut* C(X ).

Let v be a vertex of C(X; ) representing a nonseparating curve «, and let
X in CL(S) represent {«, 3}, a pants decomposition with 3 nonseparating.
This gives rise to a marked Farey graph (F,, X) corresponding to v. Note that
there is a hexagonal 2-cell containing X with the property that X corresponds
to the vertex P in Figure 6. The vertex P is distinguished as the middle ver-
tex of the non-alternating sequence in an almost-alternating hexagon. This
construction is only possible for o nonseparating. Since almost-alternating
hexagons and non-alternating sequences are preserved by automorphisms of
CL(S) (Lemmas 3 and 9), and since ¢ is independent of choice of marked
Farey graphs, we are done.
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