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Let Sg denote a closed, connected, orientable surface of genus g, and let Mod(Sg) denote
its mapping class group, that is, the group of homotopy classes of orientation preserving
homeomorphisms of Sg.

Fact. If g ≥ 2, then every Dehn twist in Mod(Sg) has a nontrivial root.

It follows from the classification of elements in Mod(S1) ∼= SL(2,Z) that Dehn twists are
primitive in the mapping class group of the torus.

For Dehn twists about separating curves, the fact is well-known: if c is a separating curve
then a square root of the Dehn twist Tc is obtained by twisting one side of c through an angle
of π. In the case of nonseparating curves, the issue is more subtle. We give two equivalent
constructions of roots below.

Geometric construction. Fix g ≥ 2. Let P be a regular (4g − 2)-gon. Glue opposite sides
to obtain a surface T ∼= Sg−1. The rotation of P about its center through angle 2πg/(2g− 1)
induces a periodic map f of T . Notice that f fixes the points x, y ∈ T that are the images
of the vertices of P . Let T ′ be the surface obtained from T by removing small open disks
centered at x and y. Define f ′ = f |T ′.
Let A and B be annular neighborhoods of the boundary components of T ′. Modify f ′ by an
isotopy supported in A ∪B so that

· f ′|∂T ′ is the identity,

· f ′|A is a g/(2g − 1)–left Dehn twist, and

· f ′|B is a (g − 1)/(2g − 1)–right Dehn twist.

Identify the two components of ∂T ′ to obtain a surface S ∼= Sg and let h : S → S be the
induced map. Then h2g−1 is a left Dehn twist along the gluing curve, which is nonseparating.

Algebraic construction. Let c1, . . . , ck be curves in Sg where ci intersects ci+1 once for
each i, and all other pairs of curves are disjoint. If k is odd, then a regular neighborhood
of ∪ci has two boundary components, say, d1 and d2, and we have a relation in Mod(Sg) as
follows:

(T 2
c1
Tc2 · · ·Tck

)k = Td1Td2 .

This relation comes from the Artin group of type Bn, in particular, the factorization of the
central element in terms of standard generators; it also follows from the D2p case of [2,
Proposition 2.12(i)]. In the case k = 2g − 1, the curves d1 and d2 are isotopic nonseparating
curves; call this isotopy class d. Using the fact that Td commutes with each Tci

, we see that

[(T 2
c1
Tc2 · · ·Tc2g−1)1−gTd]2g−1 = Td.
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Roots of half-twists. Let S0,2g+2 be the sphere with 2g + 2 punctures (or cone points)
and let d be a curve in S0,2g+2 with 2 punctures on one side and 2g on the other. On the
side of d with 2 punctures, we perform a left half-twist, and on the other side we perform
a (g − 1)/(2g − 1)–right Dehn twist by arranging the punctures so that one puncture is in
the middle, and the other punctures rotate around this central puncture. The (2g − 1)st

power of the composition is a left half-twist about d. Thus, we have roots of half-twists in
Mod(S0,2g+2) for g ≥ 2. There is a 2-fold orbifold covering Sg → S0,2g+2 where the relation
from our algebraic construction above descends to this relation in Mod(S0,2g+2) [1, Theorem
1 plus Corollary 7.1]. A slight generalization of this construction gives roots of half-twists in
any Mod(S0,n) with n ≥ 5.

Roots of elementary matrices. If we consider the map Mod(Sg)→ Sp(2g,Z) given by the
action of Mod(Sg) on H1(Sg,Z), we also see that elementary matrices in Sp(2g,Z) have roots;
for instance, we have (

1 0 0 1
0 1 0 0
0 1 −1 1
0 1 −1 0

)3

=
(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.

By stabilizing, we obtain cube roots of elementary matrices in Sp(2g,Z) for g ≥ 2.

Roots of Nielsen transformations. Let Fn denote the free group generated by x1, . . . , xn,
let Aut(Fn) denote the group of automorphisms of Fn, and assume n ≥ 2. A Nielsen trans-
formation is an element of Aut(Fn) conjugate to the one given by x1 7→ x1x2 and xk 7→ xk

for 2 ≤ k ≤ n. The following automorphism is the square root of a Nielsen transformation in
Aut(Fn) for n ≥ 3.

x1 7→ x1x3

x2 7→ x−1
3 x2x3

x3 7→ x−1
3 x2

Passing to quotients, this gives a square root of a Nielsen transformation in Out(Fn) and,
multiplying by −Id, a square root of an elementary matrix in SL(n,Z), n ≥ 3. Also, our
roots of Dehn twists in Mod(S) can be modified to work for punctured surfaces, thus giving
“geometric” roots of Nielsen transformations in Out(Fn).

Other roots. If f ∈ Mod(Sg) is a root of a Dehn twist Td, then f commutes with Td. Since
fTcf

−1 = Tf(c) for any curve c, we see that f fixes d. In the complement of d, the class f must
be periodic. This line of reasoning translates to GL(n,Z) and Aut(Fn): roots correspond to
torsion elements in GL(n− 1,Z) and Aut(Fn−1), respectively. In all cases, one can show that
the degree of the root is equal to the order of the torsion element.
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