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Abstract. We give a unified and self-contained proof of the Nielsen–Thurston classification
theorem from the theory of mapping class groups and Thurston’s characterization of rational
maps from the theory of complex dynamics (plus various extensions of these). Our proof
follows Bers’ proof of the Nielsen–Thurston classification.

1. Introduction

The main theorem of this paper is what we call the Nielsen–Thurston Übertheorem. This
is a unification, and extension, of the Nielsen–Thurston classification theorem from the theory
of mapping class groups and Thurston’s characterization of rational maps from the theory
complex dynamics. The unified statement we give here is new, although the content is almost
entirely due to Thurston. We give a unified proof of the Übertheorem by extending the
Bers proof of the Nielsen–Thurston classification [2, 7] to the case of nontrivial (branched)
covers, possibly with marked points that are not post-critical. In Appendix C, we also extend
the theorem to treat the cases of non-orientable surfaces, orientation-reversing maps, and
equivariant maps.

Thurston proved his characterization of rational maps in 1982 and gave several lectures on
the proof. The first published proof was given by Douady and Hubbard in 1993 [6]. Our

proof of the Übertheorem is not only an extension of the Bers proof of the Nielsen–Thurston
classification, but it also tracks the Douady–Hubbard paper closely. One aim of this paper
is to clarify the connection between these two proofs, which have long been recognized to be
similar in spirit but have not heretofore been put into a single framework.

The Nielsen–Thurston Übertheorem classifies dynamical branched covers, which we presently
define. Let Σ be a marked surface, that is, a pair (S, P ) where S is a closed surface, and P is
a finite set of marked points in S. By a dynamical branched cover of Σ, we mean a branched
covering map f : Σ → Σ where f(P ) ⊆ P and P contains all of the critical values of f . Dy-
namical branched covers of the sphere with degree at least 2 are traditionally called Thurston
maps (according to Douady–Hubbard, this terminology was suggested by Milnor).

A dynamical branched cover can be a homeomorphism, a nontrivial covering map, or a non-
trivial branched covering map. The last two cases only arise when S is T 2 or S2, respectively.
A motivation for studying dynamical branched covers is that they make topological operations
accessible in the context of rational maps. For instance the mating of two polynomials of
degree d is a dynamical branched cover of S2 (the maps on the hemispheres being given by the
two polynomials) with no complex structure attached.

This material is based upon work supported by the National Science Foundation under Grant Nos. DMS-
1854367, DMS-1928930, DMS-2002951, and DMS-2203431 and the Engineering and Physical Sciences Research
Council under Grant No. EP/R032866/1.
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The Nielsen–Thurston Übertheorem classifies dynamical branched covers up to homotopy.
Here, two dynamical branched covers f and g of Σ are homotopic if there is a homeomorphism
h of Σ that is homotopic to the identity (rel P ) and satisfies f ◦ h = g (this relation is finer

than the usual notion of Thurston equivalence; see below). Before stating the Übertheorem,
we recall the statements of the Nielsen–Thurston classification and Thurston’s characterization
of rational maps.

1.1. The Nielsen–Thurston classification. The Nielsen–Thurston classification theorem
for surface homeomorphisms [7, Theorem 13.2] is a theorem of Thurston from 1974, although
the first complete, published proof was given in 1979 by Fathi–Laudenbach–Poénaru [8] (many
other proofs have appeared since then).

In the statement we say that a homeomorphism is periodic if some nontrivial power is the
identity. Every periodic homeomorphism is geometric in the sense that it is an isometry in
some metric of constant curvature.

Next, we say that a homeomorphism is reducible if it preserves a multicurve, that is, a
collection of pairwise disjoint simple closed curves in Σ.

Finally, a surface homeomorphism f of Σ = (S, P ) is pseudo-Anosov if there is a pair of
transverse measured foliations (F+,F−) on Σ that is preserved by f and satisfies

f−1(F+,F−) = (λF+, 1
λ F
−)

for some λ > 1. The foliations may have 1-pronged singularities and k-pronged singularities
with k ≥ 3. Each 1-pronged singularity must be at a point of P . As with periodic maps,
pseudo-Anosov maps are geometric in that they preserve the affine structure on Σ induced by
the pair of measured foliations.

Theorem 1.1 (Nielsen–Thurston classification). Let f : Σ → Σ be a homeomorphism, where
Σ is a closed surface with finitely many marked points. Then f is isotopic to a homeomorphism
of one of the following types:

(1) periodic,
(2) reducible, or
(3) pseudo-Anosov.

Type (3) is exclusive from the other two. If f is of type (3) the pseudo-Anosov structure is
unique up to isotopy.

We can rephrase this classification as: every homeomorphism decomposes along reducing
curves into homeomorphisms that are geometric, that is, periodic or pseudo-Anosov.

Thurston proved the exclusivity by showing that pseudo-Anosov maps increase the length of
every simple closed curve exponentially under iteration (see Section 5 for more details). This
clearly fails for periodic and reducible maps (in both cases, some power of the map fixes a
curve). So in this sense the Nielsen–Thurston classification says that the only obstructions to
pseudo-Anosovity are the “obvious” ones.

1.2. Thurston’s characterization of rational maps. Our next goal is to state Thurston’s
characterization of rational maps from the theory complex dynamics. (Within the field of
complex dynamics, this theorem is often referred to as simply “Thurston’s theorem”; we prefer
to avoid this terminology due to the ubiquity of Thurston’s work in the fields of mapping class
groups, complex dynamics, and beyond.) Our phrasing of the theorem requires the notion of
an unmarked map and the notion of a strong reduction system.

Marked and unmarked maps. We say that a dynamical branched cover f : (S, P ) → (S, P ) is
unmarked if P is the post-critical set for f , that is, the set of fk(c) where c is a critical point



THURSTON’S THEOREM AND THE NIELSEN–THURSTON CLASSIFICATION 3

for f and k ≥ 1. If P strictly contains the post-critical set, then we say that f is marked. We
can define isotopy for dynamical branched covers in the same way that we defined homotopy;
these notions are equivalent since homotopic homeomorphisms of a marked closed surface are
isotopic.

Exceptional maps. We now define exceptional maps of the torus and the sphere (exceptional
maps of S2 are examples of Lattès-type maps; see below). We focus here on the unmarked
exceptional maps, the marked exceptional maps being obtained from the unmarked ones by
adding additional marked points (the latter being not post-critical). While the notion of

exceptional maps allows us to give a sharper and more general theorem, the Übertheorem and
its proof make sense without the exceptional cases.

First, an (unmarked) dynamical branched cover of T 2 is exceptional if it has degree greater
than 1. All such maps are (unbranched) covering maps. The exceptional maps of the sphere
will be defined in terms of hyperelliptic involutions of T 2, which we now discuss.

A hyperelliptic involution ι : T 2 → T 2 is a homeomorphism of order 2 that acts by −I on
H1(T 2). Every hyperelliptic involution has exactly four fixed points (this follows, for instance,
from the Riemann–Hurwitz formula). One way to obtain a hyperelliptic involution is to choose
an affine structure and base point on T 2 and take the linear map given by −I. All other
hyperelliptic involutions of T 2 are topologically conjugate to this one.

Given a hyperelliptic involution ι, we may regard the quotient T 2/ι as the sphere S2 with
a set P0 of four marked points, the images of the fixed points of ι. Any dynamical branched
cover f : T 2 → T 2 that commutes with ι descends to an unmarked dynamical branched cover
f̄ of the quotient (S2, P0). We refer to any such f as symmetric (note that f may permute
the fixed points of ι). Any f̄ constructed in this way is what we call an unmarked exceptional
dynamical branched cover of S2.

If we regard ι as the linear map given by −I, then every linear map of T 2 is symmetric, and
thus descends to an unmarked exceptional dynamical branched cover of S2. Further, every
dynamical branched cover of T 2 is homotopic to a linear one, and so every such cover has a
corresponding exceptional map of S2. This correspondence between homotopy classes is not a
bijection; for instance the identity map of T 2 and translation by 1/2 in one (or both) factors
are homotopic maps of T 2, but the corresponding maps of S2 are not homotopic (they act
differently on the set of marked points).

Strong reduction systems and stable multicurves. A labeling of a multicurve is a choice of
positive real number for each component of the multicurve. If two components of a multicurve
bound an annulus disjoint from P , then we may obtain a related multicurve by replacing these
components with a single component whose label is the sum of the two labels. We may also
obtain a related multicurve by deleting any inessential components. We consider labeled mul-
ticurves up to the equivalence relation generated by these two relations and homotopy (where
homotopies are not allowed to pass through a marked point). We say that a representative of
an equivalence class is standard if it has the minimal number of connected components.

We may say that a labeled multicurve Γ1 contains a labeled multicurve Γ2 if for each compo-
nent of the standard representative of Γ2 there is a component of the standard representative
of Γ1 that is homotopic and has a label that is at least as large.

Given a dynamical branched cover f : Σ → Σ and a labeled multicurve Γ we obtain a
labeled multicurve f∗(Γ) whose components are the components of f−1(Γ) and whose label
at a component α is 1/ deg(f |α) times the label of f(α). Finally, we say that a labeled
multicurve Γ is a strong reduction system for f if the labeled multicurve f∗(Γ) contains the
labeled multicurve Γ.
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If Γ is an unlabeled multicurve (or the unlabeled multicurve underlying a labeled one) and
f∗(Γ) contains Γ as unlabeled multicurves, then we say that Γ is stable. Similarly, if f∗(Γ)
equals Γ as unlabeled multicurves, we say Γ is invariant.

Statement of Thurston’s characterization of rational maps. We say that a self-map of S2 is
rational if, under some homeomorphic identification of S2 with Ĉ, the map is equal to a rational
map. It is a fact that the rational maps of Ĉ are exactly the holomorphic maps.

Thurston observed that a strong reduction system is an obstruction to holomorphicity for
a non-exceptional dynamical branched cover. We will return to this point after the statement
of Thurston’s characterization of rational maps. Because of Thurston’s observation, strong
reduction systems for non-exceptional dynamical branched covers are called Thurston obstruc-
tions in the literature. Since strong reduction systems are not obstructions to holomorphicity
in the exceptional cases, we avoid this terminology.

Theorem 1.2 (Thurston’s characterization of rational maps). Let f : Σ→ Σ be an unmarked
dynamical branched cover where Σ = (S2, P ). If f is not exceptional, then f is isotopic to a
dynamical branched cover of one of the following two types:

(1) rational, or
(2) strongly reducible.

The two types are exclusive. If f is of type (1), the complex structure is unique up to isotopy.

Our statement of Thurston’s characterization is different from, but equivalent to, the usual
statement. One difference is that our statement involves a stable multicurve instead of an
invariant multicurve. So in terms of finding an obstruction to rationality, our statement is
stronger. Another difference is that our statement makes no reference to a matrix or an
eigenvalue (the labels on the strong reduction system play the role of the eigenvector).

Pilgrim [16] showed that we can use Thurston’s characterization of rational maps to say that
every unmarked dynamical branched cover of (S2, P ) reduces into pieces that are geometric,
that is, rational. This is analogous to the story for surface homeomorphisms, as above.

The uniqueness statement in Theorem 1.2 is often referred to as Thurston rigidity. Hence the
common parlance: Thurston’s theorem states that a Thurston map has a Thurston obstruction—
meaning that the Thurston matrix has a Thurston eigenvalue greater than or equal to 1—or
it is Thurston equivalent to a rational map, which moreover satisfies Thurston rigidity.

Topological polynomials, Levy cycles, and Levy–Berstein. We say that a dynamical branched
cover f : (S2, P )→ (S2, P ) is a topological polynomial if P contains a fixed point p for f and
the local degree of f at p is equal to deg f . We may regard the topological polynomial f as a
dynamical branched cover of (R2, P \ p) (so p plays the role that ∞ plays for a polynomial).

Examples of topological polynomials include polynomials acting on Ĉ (equivalently, acting
on C).

A multicurve {γ1, . . . , γk} for a dynamical branched cover f is a Levy cycle if there is a
cyclic permutation σ of {1, . . . , k} so that for every i there is a component γ̃i of f−1(γi) that is
homotopic to γσ(i) and that maps with degree 1 onto γi. A Levy cycle is degenerate if each γi
bounds an embedded disk ∆i so that for every i some component of f−1(∆i) that is homotopic
to ∆σ(i) and maps with degree 1 onto ∆i.

By work of Berstein, Hubbard, Levy, Rees, Tan, and Shishikura [11, Theorem 10.3.7] we
have the following refinement of Thurston’s characterization of rational maps: a topological
polynomial is either rational or it has a degenerate Levy cycle. In Appendix B we state and
prove a strengthening of Levy’s theorem, Proposition B.1.
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Levy cycles are strong reduction systems. However, they are not always Thurston obstruc-
tions since they are not always invariant multicurves. It is a feature of our statement of
Thurston’s characterization of rational maps that Levy cycles suffice to obstruct rationality.

Levy and Berstein give a sufficient criterion for a topological polynomial to be rational: each
point of P contains a critical point in its forward orbit. This result is known as the Levy–
Berstein theorem. In Appendix B we explain how to derive this statement from Proposition B.1.

Portraits, homotopy, and Thurston equivalence. Above, we defined two dynamical branched
covers f and g of Σ to be homotopic if there is a homeomorphism h of Σ that is homotopic to
the identity (rel P ) and satisfies f ◦h = g. We give here an alternate description of homotopic
maps and also compare the notion of homotopy to the more commonly used notion of Thurston
equivalence. For the former we require the notion of an extended portrait.

The portrait of a dynamical branched cover f is the directed, labeled graph whose vertices
are the post-critical points of f and where there is an edge labeled k from p1 to p2 if f maps
p1 to p2 with local degree k. The extended portrait of f is defined in the same way, except
that the vertex set consists of the critical points and the post-critical points of f .

We may say that two dynamical branched covers of Σ are homotopic if they are connected
by a homotopy of maps ft : Σ→ Σ rel P where each ft is a dynamical branched cover and all
of the ft have the same extended portraits up to labeled, directed graph isomorphism. This
notion agrees with the notion of homotopy given earlier.

Let Σ = (S, P ) and T = (S,Q) be two marked surfaces. In the literature, dynamical
branched covers f : Σ→ Σ and g : T → T are said to be Thurston equivalent (or combinato-
rially equivalent) if there are homeomorphisms h0, h1 : Σ→ T that are homotopic (rel P ) and
satisfy f ◦ h0 = h1 ◦ g. If, for example, f and g are polynomials with different post-critical
sets, then it does not make sense for f and g to be homotopic, but it does make sense for them
to be Thurston equivalent. Because of this, Thurston’s characterization of rational maps is
usually stated in terms of Thurston equivalence. We will not discuss Thurston equivalence in
what follows.

Orbifolds and Thurston obstructions. Let N̂ denote N ∪ {∞}. For our purposes, a (2-

dimensional) orbifold is a marked surface (S, P ) endowed with a function ν : P → N̂. We

think of the function ν as a labeling of the points of P by elements of N̂.
To a dynamical branched cover f : (S, P )→ (S, P ) there is an associated orbifold structure

on (S, P )—that is, an associated function ν—defined as follows. For each k and each critical
point c of fk with fk(c) = p, we compute the local degree of fk at c. The label νp is the
least common multiple of these local degrees over all such choices of k and c (we take the
least common multiple of the empty set to be 1, so the label on a non-postcritical point is
1). We provide geometric meaning to this notion in Appendix A. Briefly, the orbifold for f is
the minimal orbifold structure for which f is a partial self-cover (in the orbifold sense). Every
orbifold falls into one of three categories—spherical, Euclidean, or hyperbolic—according to
whether its Euler characteristic is positive, zero, or negative; see the appendix.

Thurston’s characterization of rational maps can equivalently be stated in terms of orbifolds
instead of exceptional maps. There is a particular orbifold (S2, P ), called the (2, 2, 2, 2)-
orbifold, where |P | = 4 and ν(p) is equal to 2 for all p ∈ P . In the appendix, we show that
a dynamical branched cover f of (S2, P ) is exceptional if and only if the orbifold for f is the
(2, 2, 2, 2)-orbifold. As such, we obtain an alternate statement of Thurston’s characterization,
namely, that if the orbifold for a dynamical branched cover f of (S2, P ) is not the (2, 2, 2, 2)-
orbifold, then (up to homotopy) f is either holomorphic or it has a strong reduction system.
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With this in mind, we may think of Thurston’s characterization of rational maps as a state-
ment about maps with hyperbolic orbifold, as opposed to a statement about non-exceptional
maps. Indeed, a slight weakening of Theorem 1.2 is that if f has hyperbolic orbifold, then f is
rational if and only if it is not strongly reducible (the only weakening is that this version leaves
out non-exceptional Euclidean maps). The (2, 2, 2, 2)-orbifold is the only Euclidean orbifold
with four cone points. Since there are no essential curves on an orbifold with three marked
points, there are no strong reduction systems and so by Thurston’s characterization all such
dynamical branched covers are rational. To summarize, the reasons why Thurston’s dichotomy
holds for maps with hyperbolic orbifold and non-exceptional maps with Euclidean orbifold are
different: in the former case strong reduction systems are obstructions to holomorphicity, and
in the latter case there are no strong reduction systems.

In the Appendix A, we use orbifolds to explain why strong reduction systems are obstructions
to holomorphicity for maps with hyperbolic orbifold. Unlike previous proofs in the literature,
our argument makes no reference to Teichmüller space or the pullback map. Instead, it relies
on the geometric characterization of the orbifold for a dynamical branched cover that seems to
not appear in the literature but was surely known to Thurston. As with the Nielsen–Thurston
classification, we can therefore think of Thurston’s characterization of rational maps as saying
that the only obstruction to holomorphicity is the “obvious” one.

1.3. The Nielsen–Thurston Übertheorem. Before stating the Übertheorem, we introduce
affine exceptional maps, which will appear in the statement. We think of these as being
geometric representatives of homotopy classes of maps, in the same way that pseudo-Anosov
and holomorphic maps are.

Affine exceptional maps. An unmarked affine exceptional map of T 2 is simply that: an ex-
ceptional map of T 2 (in other words, a map of degree greater than 1) that is unmarked and
preserves some affine structure on T 2. Again, all unmarked exceptional maps of T 2 are homo-
topic to affine exceptional maps. To translate this notion to the sphere case, we again need to
go through the hyperelliptic involution.

Fix an affine structure on T 2 and choose a base point. As above, there is an associated
hyperelliptic involution ι, one of whose fixed points is the base point. All linear maps of
T 2 are symmetric with respect to ι and hence descend to unmarked dynamical branched
covers of (S2, P0), the sphere with four marked points. These are examples of unmarked affine
exceptional maps of (S2, P0) (there are four marked points but, as per the definition of an
unmarked map, they are all post-critical).

More generally, if we take a linear map of T 2 and compose it with a rotation of T 2 by π in
either or both factors, we obtain an affine map of T 2 that descends to a map of (S2, P0). Any
such map is an unmarked affine exceptional map of S2. While S2 carries no affine structure, it
does carry many singular affine structures: those arising from affine structures on T 2. Affine
maps of S2 preserve these singular affine structures.

A dynamical branched cover of a torus or a sphere with four marked points is an unmarked
affine exceptional map if it is affine with respect to some choice of (singular) affine structure.

A marked exceptional dynamical branched cover is affine if the corresponding unmarked
map (obtained by forgetting the extra marked points) is affine. In the case of the torus this
means forgetting all the marked points, and in the case of the sphere this means forgetting all
but four (all of which being post-critical). We emphasize that a marked map is affine if the
corresponding unmarked map is actually an affine map, not just homotopic to an affine map.
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Statement of the Übertheorem. After stating two definitions, we will give the statement of the
Übertheorem and explain how to derive the previous two theorems as special cases.

A dynamical branched cover f : Σ → Σ of degree d is holomorphic if it is holomorphic
with respect to some complex structure on Σ. And f is pseudo-Anosov if there is a pair of
transverse measured foliations (F+,F−) on Σ that is preserved by f and satisfies

f−1(F+,F−) = (λ
√
dF+,

√
d
λ F−)

for some λ > 1. The singularities have the same restrictions as in the case of a pseudo-Anosov
homeomorphism.

Nielsen–Thurston Übertheorem. Let f : Σ → Σ be a dynamical branched cover. Then f
is isotopic to a map φ of one of the following types:

(1) holomorphic,
(2) strongly reducible, or
(3) pseudo-Anosov.

If f is of type (1) and of type (2), then either deg f = 1 or f is affine exceptional. If f is of
type (2) and of type (3) then f is affine exceptional. If f is of type (3) then either deg f = 1
or f is affine exceptional.

If f is of type (1) and f is a non-exceptional map with deg f > 1, then the associated
complex structure is unique up to isotopy. If f of type (3) then the associated pair of measured
foliations is unique up to isotopy.

As mentioned, the Übertheorem has the Nielsen–Thurston classification and Thurston’s
characterization of rational maps as special cases. To see that the Nielsen–Thurston classifi-
cation is the deg f = 1 case, we must use the following three facts about homeomorphisms
of surfaces: (1) a holomorphic homeomorphism of a surface of negative Euler characteristic
has finite order (and a holomorphic homeomorphism of the torus is homotopic to a map of
finite order), (2) a strong reduction system is nothing other than a reduction system, and (3)
a pseudo-Anosov dynamical branched cover of degree 1 is a pseudo-Anosov homeomorphism.

To obtain Thurston’s characterization of rational maps from the Übertheorem, we use the
fact that holomorphic maps of S2 are rational. Since we do not require the marked points of Σ to
be post-critical, the Übertheorem also implies the generalization of Thurston’s characterization
due to Buff–Cui–Tan, which extends the theorem to the case of marked dynamical branched
covers [4, Theorem 2.1].

While we are not aware of any theorems in the literature that combine the exceptional
cases of Thurston’s characterization of rational maps into the classical statement, a result of
Bartholdi–Dudko does give an analogue of the Übertheorem for the exceptional cases them-
selves [1, Theorem A].

Extensions of the Übertheorem: non-orientable surfaces, orientation reversing maps, equivari-
ant maps. In Appendix C, we explain how our argument for the Nielsen–Thurston Übertheorem
applies in even further generality. Specifically, we give extensions to the cases of non-orientable
surfaces and the cases of orientation-reversing dynamical branched covers. We also give a ver-
sion of the Übertheorem for equivariant dynamical branched covers.

The Bers strategy. As in the Bers proof of the Nielsen–Thurston classification, we prove the
Übertheorem by appealing to the action of a dynamical branched cover f : Σ → Σ on the
Teichmüller space Teich(Σ). A point in Teich(Σ) is an equivalence class of complex structures
on Σ. By pulling back complex structures through f , we obtain Thurston’s pullback map
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σf : Teich(Σ) → Teich(Σ). (In the original Bers proof, it makes sense to consider either
pullback or push-forward, but for covers of higher degree only pullback makes sense in general.)

Following Bers, we consider the translation length τ of σf , that is, the infimum of the
distances d(X,σf (X)) over all X in Teich(Σ). There are three cases for τ : it can be 0 and
realized, not realized, or nonzero and realized. In the first case, σf has a fixed point, which
means that f is holomorphic. In the second case, we show that f has a reduction system. As in
the original Bers proof, this is derived as a consequence of the Mumford compactness criterion.
When deg f > 1 we augment the original Bers proof to show that there is an orbit for σf that
goes to infinity (towards the reduction system); this is the content of Proposition 4.2. Then,
assuming the reduction system is not strong, we show that this orbit is also repelled from
infinity, a contradiction. Finally, in the third case, we show that σf preserves a geodesic ray in
Teich(Σ). This phenonenon, which does not seem to have been observed before for deg f > 1,
is elucidated in Proposition 4.3. We show that this only occurs in the exceptional cases and the
cases where deg f = 1. Perhaps unexpectedly, the usual discussion for the deg f = 1 applies
in this more general case. As in the original Bers proof, we then show that a geodesic ray
corresponds to a pair of transverse measured foliations, and the translation distance along the
ray corresponds to a stretch factor λ, thus implying that f is pseudo-Anosov.

Examples of non-exclusivity. Figure 1 gives examples of dynamical branched covers of T 2 of all
the different types allowed by the Übertheorem when the cover is exceptional and the degree is
greater than 1: holomorphic, holomorphic and strongly reducible, strongly reducible, strongly
reducible and Anosov, and Anosov. (Here we say “Anosov” instead of “pseudo-Anosov” since
the underlying surface is a torus, and hence the corresponding foliations have no singularities.)
For the first three examples, we require that d be a perfect square. As demanded by the
Übertheorem, the strongly reducible and Anosov example fails to be Anosov when d = 1.

holomorphic strongly reducible Anosov(
0
√
d

−
√
d 0

) (√
d 0

0
√
d

) (√
d 1

0
√
d

)
( d 0

0 1 )
(
d+1 d
d d

)

Figure 1. A Venn diagram of different types of dynamical branched covers of T 2

Comparison to Douady–Hubbard. The original proof of Thurston’s characterization of rational
maps is detailed in Douady–Hubbard’s paper [6] and Hubbard’s book [11]. Our approach is
the same in spirit, but differs in the following ways:

(1) we appeal to Teichmüller’s theorems instead of working with the derivative of the pull-
back map (our application of Teichmüller’s uniqueness theorem is morally equivalent
to Lemma 1 of Douady–Hubbard),

(2) we avoid explicit mention of hyperbolic surfaces, staying entirely in the category of
Riemann surfaces,

(3) we give a simplified treatment of the combinatorial topological step (Proposition 2.1)
and, like Buff–Cui–Tan, we directly address the case where there are marked points
that are not post-critical (the cost of our simplification is the loss of sharpness),

(4) we isolate in Section 4 the basic properties of metric spaces we use, and
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(5) we clarify the role that orbifolds play in the proof that strong reduction systems are
obstructions to holomorphicity in the case of a non-exceptional map.

Another feature of our exposition is that we treat many cases of Thurston’s characterization
of rational maps that were not addressed before, namely, the cases where S = T 2, where S
is non-orientable, where f reverses orientation, and where f is equivariant with respect to a
finite group action. The arguments of Douady–Hubbard could similarly be extended to prove
these additional cases.

One other philosophical difference between our approach and the prevailing literature is
that we make no mention of Thurston equivalence. To wit, instead of considering maps up to
homotopy and conjugacy, we only consider maps up to homotopy. This point of view has long
been championed by Kevin Pilgrim.

We emphasize that there is a general translation between the Douady–Hubbard proof and
our proof; and in the text that follows we have indicated the points of similarity. We hope
that our exposition will appeal to those already familiar with the Bers proof of the Nielsen–
Thurston classification theorem, and will also clarify the relationship between that theorem
and Thurston’s characterization of rational maps.

Work in progress by Drach–Reinke–Schleicher [?] gives a new approach to the four theorems
of Thurston involving the pullback map (two of which are the ones discussed in this paper).
Their approach also uses Teichmüller’s theorems instead of the derivative of the pullback map.

Lattès maps and Euclidean maps. The exceptional maps that we consider overlap with several
other notions in the literature, and the terminology is used differently by different authors.
A Lattès map is a holomorphic branched cover S2 → S2 that is the finite quotient of a
holomorphic affine map of T 2. Milnor gives a thorough survey and further characterization of
Lattès maps [15]. A Lattès-type map is a (not-necessarily-holomorphic) quotient of an affine
map of T 2 (this is not typically given as the definition of Lattès-type, but Bonk–Meyer prove
that it is equivalent [3, Theorem 1.2]). The exceptional maps we consider are Lattès-type maps
where the finite quotient is by the hyperelliptic involution. (Milnor also defines finite quotients
of affine maps, which have a similar definition as a Lattès map, except with the torus possibly
replaced by a cylinder; these types of maps do not arise in this paper.)

Cannon–Floyd–Parry–Pilgrim consider Euclidean maps, which they define as dynamical
branched covers of S2 with at most four post-critical points, none of which are critical, such that
every critical point is simple (local degree two) [5]. These are precisely the dynamical branched
covers with Euclidean orbifold and at least four (hence exactly four) post-critical points. Our
exceptional maps of S2 are the Euclidean maps of Cannon–Floyd–Parry–Pilgrim. Cannon–
Floyd–Parry–Pilgrim also introduce and study nearly Euclidean maps, which are branched
covers of S2 with exactly four post-critical points and where each critical point is simple (such
as the rabbit polynomial).

1.4. Overview of the paper. We divide the proof of the Übertheorem into five parts, each
with their own section. The first three of these sections isolate three different aspects of the
proof, namely, combinatorial topology, Teichmüller theory, and metric space theory. Sections 5
and 6 tie these together to prove the theorem for the non-exceptional and exceptional cases,
respectively. While the exceptional cases are handled separately, we emphasize that the proof
is essentially the same; the main content is already contained in the non-exceptional case, while
the exceptional case requires a few extra technical details.

In Section 2, we give a combinatorial topological statement, Proposition 2.1. It says that,
under certain hypotheses on f , at most 3 marked points have the property that all of their
iterated preimages under f are critical or marked.
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In Section 3 we prove Proposition 3.1, which is about the pullback map on Teichmüller
space σf . The proposition states that if deg f > 1 and if f is not exceptional, then some
iterate of σf is weakly contracting, meaning that it decreases the distance between all pairs of
points. The proof uses Proposition 2.1.

In Section 4 we prove three statements about metric spaces, namely, Propositions 4.1, 4.2,
and 4.3. The purpose is to isolate the parts of the proof of the Übertheorem that only use the
theory of metric spaces and not the theory of Teichmüller space.

In Section 5 we follow the Bers proof of the Nielsen–Thurston classification in order to
prove the Übertheorem in the non-exceptional cases. Our argument follows the Bers strategy
described above. Again, the key idea is to consider the translation length τ of the pullback
map on Teichmüller space and separately investigate the three cases where τ is 0 and realized,
nonzero and realized, and not realized. These three cases exactly correspond to the three cases
in the conclusion of the Übertheorem.

Finally in Section 6, we prove the Übertheorem in the exceptional cases. We prove that
in these cases the associated Teichmüller space decomposes as a product in a natural way,
and apply the ideas of Section 5 to the action of a dynamical branched cover on the product
structure. Among maps of degree greater than 1, the exceptional f that preserve a horizontal
slice are exactly the ones whose associated pullback maps fail to have weakly contracting orbits.
This is the reason why exceptional maps require separate consideration.

There are three appendices. Appendix A gives a direct proof of the fact that strong re-
duction systems are obstructions to holomorphicity for dynamical branched covers with hy-
perbolic orbifold. Along the way, we clarify the geometric meaning of the orbifold structure
for a dynamical branched cover. In Appendix B we explain how Thurston’s characterization
of rational maps specializes in the case of topological polynomials. Appendix C describes
how our arguments apply to give generalizations of the Übertheorem to the cases of equi-
variant dynamical branched covers, dynamical branched covers of non-orientable surfaces, and
orientation-reversing dynamical branched covers.

Acknowledgments. We would like to thank Wolf Jung, Jeremy Kahn, Sanghoon Kwak, Yair
Minsky, Insung Park, Kevin Pilgrim, Dierk Schleicher, Roberta Shapiro, and Sam Taylor for
helpful comments and conversations. The second author is grateful to the Georgia Institute
of Technology for supporting this work. The third author is grateful to the Mathematical
Sciences Research Institute for a stimulating work environment.

2. Stable marked points

The goal of this section is to prove Proposition 2.1 below. This is the main ingredient in the
proof of Proposition 3.1 in Section 3. A refined version of this proposition is given by Lemma 2
of Douady–Hubbard. To state our proposition, we require the notion of stability.

Stability of marked points. Let Σ = (S, P ) and let f : Σ→ Σ be a dynamical branched cover.
We say that p ∈ P is stable if f−1(p) ⊆ P ∪ Crit(f). We say that p is infinitely stable if
f−k(p) ⊆ P ∪ Crit(fk) for all k ≥ 0.

If f is exceptional, then each post-critical point is infinitely stable. The following proposition
is a sort of converse to this statement.

Proposition 2.1. Let Σ = (S2, P ), and let f : Σ→ Σ be a dynamical branched cover of degree
d > 1. If f is not exceptional, then f has fewer than 4 infinitely stable marked points.

Proof. Let Q ⊆ P be the set of infinitely stable points for f , and suppose that |Q| ≥ 4. We
will show that f is exceptional.
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Let Q̃ = f−1(Q), and let C = Crit(f)∩Q̃. If a non-critical marked point maps to an infinitely

stable marked point, then it itself is infinitely stable, that is, Q̃ ⊆ Q ∪ C. In particular,

|Q̃| ≤ |C|+ |Q|.

Since (counting with multiplicity) a critical point of degree k accounts for k pre-images of a
point in Q, we also have

|Q̃| = |Q|d−
∑
c∈C

(
degf (c)− 1

)
.

By the Riemann–Hurwitz formula and the preceding equality and inequality we have

2d− 2 ≥
∑
c∈C

(
degf (c)− 1

)
= |Q|d− |Q̃| ≥ |Q|d− |Q| − |C| = |Q|(d− 1)− |C|.

We conclude that |C| ≥ (|Q| − 2)(d− 1). Since d > 1 and a branched cover S2 → S2 of degree
d has at most 2d − 2 critical points, it follows that |Q| ≤ 4. By our earlier assumption that
|Q| ≥ 4, we conclude that |Q| = 4.

Replacing |Q| with 4 in the above, we conclude that |C| = 2d − 2, so C is equal to all of
Crit(f) and each critical point is simple. Moreover, the inequality must be an equality, so in

particular |Q̃| = |C| + |Q|, which means that C is disjoint from Q and Q ⊆ Q̃. This means
that f(Q) ⊆ Q. Since Q contains all the critical values of f , it follows that Q contains the
post-critical set.

Because the preimage of each point of Q is either in Q or in C it follows that every point
in Q must be post-critical. Since the critical points are all simple, the ramification index at
each point of Q is 2. In other words, the orbifold for f is the (2, 2, 2, 2)-orbifold. As in the
introduction, this is equivalent to the statement that f is exceptional, as desired. �

Similar arguments can be used to derive a stronger conclusion if P is the post-critical set:
the second iterate f2 must have fewer than 4 stable marked points, and if f is a topological
polynomial then f itself must have fewer than 4 stable marked points. Combining this with
the proof of Proposition 3.1 below, it follows that σ2

f is weakly contracting whenever P is the
post-critical set, and σf is weakly contracting in this case if f is a topological polynomial.

3. Pullback is a weak contraction

The goal of this section is to prove Proposition 3.1, which states that the pullback map is
non-expanding, and in many cases weakly contracting. A refinement of this statement is given
in Proposition 3.3 of Douady–Hubbard. Both of these results are in concert with a theorem of
Royden, which says that analytic maps of Teichmüller space are weak contractions [17]. As in
the work of Douady–Hubbard, we will neither use the analyticity of the pullback map nor the
Royden result. We begin with the requisite definitions; see [7, Chapter 11] for more details.

Teichmüller space and the pullback map. Let Σ = (S, P ) and let f : Σ → Σ be a dynamical
branched cover. The Teichmüller space Teich(Σ) is the set of complex structures on Σ up
to isotopy. More specifically, a complex structure on Σ is a complex structure on S and two
complex structures X and Y on Σ are equivalent if there is a isomorphism h : X → Y that is
isotopic to the identity (here we insist that h(P ) = P and that isotopies fix P ).

The pullback map associated to f is the map

σf : Teich(Σ)→ Teich(Σ)

defined by pulling back complex structures through f .
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The Teichmüller metric and Teichmüller’s theorems. The Teichmüller metric on Teich(Σ) is
defined as follows. For a map h between Riemann surfaces, let K(h) denote the quasi-conformal
dilatation. Given X,Y ∈ Teich(Σ) we set

K(X,Y ) = inf{K(h) | h : X → Y and h ∼ id}

and

d(X,Y ) =
1

2
logK(X,Y ).

Teichmüller’s existence theorem gives that the infimum is a minimum, that is, there is a
map h, called the Teichmüller map, that realizes the infimum [7, Theorem 11.8]. Teichmuller’s
uniqueness theorem states that the minimizing map h is unique [7, Theorem 11.9].

Teichmüller maps and foliations. Teichmüller’s existence theorem further gives an explicit
description of the Teichmüller map h. Usually, this description is phrased in terms of quadratic
differentials. We avoid this terminology here.

For the description of h, we need the fact that a pair of transverse measured foliations
(F+,F−) on Σ induces a complex structure on Σ; in other words, (F+,F−) represents a point
in Teich(Σ). Indeed, (F+,F−) gives a Euclidean structure on Σ away from the singularities,
and hence (orientation-preserving) charts to the complex plane, well-defined up to rotation.
If the charts identify segments of the leaves of F+ and F− with horizontal and vertical line
segments, then they are called natural coordinates for (F+,F−). These are well defined up to
translation in C.

Now, Teichmüller’s description of the Teichmüller map h is that there is a pair of measured
foliations (F+,F−) on Σ so that, setting λ =

√
K(h), we have

• (F+,F−) induces X,
• (λF+, 1

λ F
−) induces Y , and

• in natural coordinates with respect to these two pairs of foliations, h is given by(
λ 0
0 1/λ

)
One way to rephrase Teichmüller’s theorems is that every geodesic ray in Teich(Σ) is deter-

mined by a pair of transverse measured foliations (F+,F−) on Σ, and the ray is obtained by
multiplying F+ by λ ≥ 1 and F− by 1/λ.

The measured foliations F+ and F− must have singularities if χ(S) 6= 0. If there are any
1-pronged singularities, they must be at points of P , for otherwise K(h) is not minimal.

The pullback map is non-expanding or weakly contracting. Let (T, d) be a metric space and let
σ : T → T . We say that σ is non-expanding if

d(σ(x), σ(y)) ≤ d(x, y)

for all x, y ∈ T . We say that σ is weakly contracting if

d(σ(x), σ(y)) < d(x, y)

for all distinct x, y ∈ T .

Proposition 3.1. Let Σ = (S, P ), and let f : Σ→ Σ be a dynamical branched cover.

(1) The pullback map σf is non-expanding.

(2) If f is not exceptional and deg(f) > 1, then σkf is weakly contracting for some k ≥ 1.
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Idea of the proof and pseudo-Teichmüller maps. Before proving Proposition 3.1, we explain
the main observation used in the proof. Let f : Σ → Σ be a dynamical branched cover, let
X,Y ∈ Teich(Σ), and let h : X → Y be a Teichmüller mapping. Since h is isotopic to the
identity, there is a unique map hf , which we call the lifted map, that is isotopic to the identity
and so that the following diagram commutes:

σf (X) σf (Y )

X Y

hf

f f

h

We can incorporate the pair of foliations (F+,F−) into the diagram:

(σf (X), f∗(F+,F−)) (σf (Y ), f∗(λF+, 1
λ F
−))

(X, (F+,F−)) (Y, (λF+, 1
λ F
−))

hf

f f

h

As the pullback f∗(λF+, 1
λ F
−) on the top right of the diagram is equal to (λ f∗(F+), 1

λ f
∗(F−))

the map hf has the same quasiconformal dilatation as h. It locally behaves like a Teichmüller
map whose associated foliations are the pullbacks of the foliations for h. However, hf need not
be a Teichmüller map, because it is possible that these foliations have 1-pronged singularities
at unmarked preimages of points of P .

In general, if a map is obtained from a Teichmüller map by forgetting a marked point at
one of the associated 1-pronged singularities, we call that map a pseudo-Teichmüller mapping.
The key point is that pseudo-Teichmüller mappings are not themselves Teichmüller mappings.

Proof of Proposition 3.1. Let X,Y ∈ Teich(Σ). Let h : X → Y be the Teichmüller map, which
exists by Teichmüller’s existence theorem. As above, the lifted map

hf : σf (X)→ σf (Y )

is a Teichmüller map or pseudo-Teichmüller map with the same quasi-conformal dilatation
as h. The first statement follows now from the definition of the Teichmüller metric.

Suppose now that f is not exceptional and deg(f) > 1. In this case S = S2 and f is not the
quotient of an affine map by the hyperelliptic involution. Since S = S2, the foliations associated
to h must have at least four 1-pronged singularities at points of P . By Proposition 2.1, there
is a k so that at least one of these four points of P fails to be stable for fk. Therefore the
pulled back map

hf
k

: σkf (X)→ σkf (Y )

is a pseudo-Teichmüller map and not a Teichmüller map. The second statement follows from
Teichmüller’s uniqueness theorem and the definition of the Teichmüller metric. �

As mentioned, the analogue of Proposition 3.1 in Douady–Hubbard is their Proposition 3.3.
The key to that proof is their Lemma 1, which is the analogue of our observation that the
pullback of a Teichmüller map is a pseudo-Teichmüller map. There they observe that the
pullback of a Beltrami differential q has norm greater than or equal to that of q, and that
we have equality if and only if the preimages of the images of the poles of p are critical
or post-critical. Through the duality between equivalence classes of Beltrami differentials
(tangent vectors for Teichmüller space) and holomorphic quadratic differentials (cotangent
vectors for Teichmüller space), we see that the two arguments are essentially the same. Indeed,
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a Beltrami differential can be thought of as an ellipse field, and there is a natural ellipse field
associated to a Teichmüller map. In this way, our argument using Teichmüller’s theorems
recovers the Douady–Hubbard statement that the derivative of (an iterate of) the pullback
map is contracting [6, Proposition 3.3].

4. Synthetic Nielsen–Thurston theory

By a synthetic Nielsen–Thurston package, we mean a collection (T, P, φ, σ), where

(1) T is a uniquely geodesic metric space where all maximal geodesics are bi-infinite,
(2) P is a group acting properly discontinuously on T ,
(3) φ : P 99K P is a virtual endomorphism, and
(4) σ : T → T is a function that is intertwined with φ and is non-expanding.

Here a virtual endomorphism φ : P 99K P is a homomorphism L→ P where L is a finite-index
subgroup of P . We say σ is intertwined with φ if σ(g ·x) = φ(g) ·σ(x) for all x ∈ T and g ∈ L.

In this paper, the only synthetic Nielsen–Thurston packages we will consider are ones where
the space T is Teich(Σ) for some marked surface Σ, where P is the pure mapping class group
PMod(Σ), where φ is the lifting homomorphism associated to a given dynamical branched
cover f : Σ→ Σ (see Section 5), and where σ is the pullback map σf . Our axiomatic approach
is meant to clarify which properties of these objects are essential for the argument.

We will write τσ(X) for d(X,σ(X)) and τσ for the translation distance, which is the infimum
of τσ(X) over X ∈ T :

τσ = inf
X∈T

τσ(X).

In this section we prove three propositions about synthetic Nielsen–Thurston packages, Propo-
sitions 4.1, 4.2, and 4.3. These will be used in the proof of the Nielsen–Thurston Übertheorem
to address the cases where

(1) τσ is not realized and σf is non-expanding,
(2) τσ is not realized and σf is weakly contracting, and
(3) τσ is realized and σf is non-expanding.

In the proof of the Übertheorem in Section 5, these appear in Case 2 (deg f = 1 subcase), Case
2 (deg f > 1 subcase), and Case 3, respectively.

Translation distances not realized. The following proposition is a slight generalization of one
of the steps in the Bers proof of the Nielsen–Thurston classification [7, Section 13.6.1, Step
1]. In that classical setting, the map φ is simply the inner automorphism of the mapping class
group corresponding to f−1 (this makes sense because the lift of a homeomorphism g under a
homeomorphism f is f−1gf).

Proposition 4.1. Let (T, P, φ, σ) be a synthetic Nielsen–Thurston package where τσ is not
realized. If {Xn} is a sequence in T with

τσ(Xn)→ τσ,

then the image of {Xn} in T/P is not contained in any compact set.

Proof. Suppose to the contrary that the image of {Xn} has compact closure. We will find a
point Z so that τσ(Z) ≤ τσ, contrary to the assumption that τσ is not realized.

Let L be the domain of φ, and let π : T → T/L be the quotient map. Since L has finite
index in P , the map T/L → T/P is finite-to-one. Thus {π(Xn)} has a limit point, which is
π(Y ) for some Y ∈ T .
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The desired Z will be in the L-orbit of Y . To find this Z, we define F : T/L→ [0,∞) by

F (π(X)) = min
g∈L

τσ(g ·X).

We will prove below that F is well defined, which implies two further statements:

(1) F is continuous, and
(2) there exists g ∈ L with τσ(g · Y ) ≤ τσ ⇐⇒ F (π(Y )) ≤ τσ.

Moreover, the last inequality follows from the continuity of F and the definition of Y .
It remains to prove that F is well defined. To this end, we give another description of F .

Using the definition of τσ(g · X), the assumption that σ is intertwined with φ, and the fact
that elements of L act by isometries on Teich(Σ), we have

τσ(g ·X) = d
(
g ·X,σ(g ·X)

)
= d
(
g ·X,φ(g) · σ(X)

)
= d
(
X, g−1φ(g) · σ(X)

)
.

From this we obtain the following description of F :

F (π(X)) = min
g∈L

d(X, g−1φ(g) · σ(X)).

The set of points g−1φ(g) · σ(X) is a subset of the P -orbit of σ(X). Since P acts properly
discontinuously, the given minimum exists, which is to say F is well defined. �

We remark that the proof of Proposition 4.1 does not use the non-expanding property of σ.

Weakly contracting orbits. The next proposition is essentially the same as Proposition 5.1 of
Douady–Hubbard. We begin by giving the definition of a weakly contracting orbit.

Given a self-map σ of a metric space T and an orbit O = (Xi)
∞
i=1 where Xi = σi(X), we say

that O is weakly contracting if the sequence d(Xi, Xi+1) is strictly decreasing (in particular, no
two Xi are equal). Since d(Xi+1, Xi+2) is equal to d(σ(Xi), σ(Xi+1)), it follows that all orbits
of a weakly contracting map are weakly contracting. It also follows from the definitions that
if all orbits of a map are weakly contracting, then the map has no fixed points.

Proposition 4.2. Let (T, P, φ, σ) be a synthetic Nielsen–Thurston package. If every orbit for
σ is weakly contracting, then every orbit leaves every compact subset of T/P .

Note that Proposition 4.2 applies whenever σ is weakly contracting and τσ is not realized,
since having a fixed point implies that τσ is realized (and is equal to 0).

Proof of Proposition 4.2. Let O = (Xi) be a σ-orbit. Suppose for the sake of contradiction
that the image of O in T/P has compact closure. In order to obtain a contradiction, we will
find another σ-orbit (Yi) whose first three terms satisfy

d(Y0, Y1) = d(Y1, Y2).

Here is why this is a contradiction. Since Yi is a σ-orbit, the above equality is equivalent to

d(Y, σ(Y )) = d(σ(Y ), σ2(Y ))

where Y = Y0; equivalently, τσ(Y ) = τσ(σ(Y )). By the weakly contracting property of σ,
this implies that d(Y, σ(Y )) = 0, which is to say that σ has a fixed point, contrary to the
assumption that all orbits of σ are weakly contracting.

To find such a Y = Y0, our strategy is similar to the one used in the proof of Proposition 4.1.
Because we need to analyze three consecutive points in an orbit, instead of just two, we need
to replace T/L with a further finite cover of T/P . To this end, let

L2 = {g ∈ P | φ2(g) is defined}.
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The subgroup L2 has finite index in P . Let π be the quotient map

π : T → T/L2.

Since L2 has finite index, the sequence {π(Xi)} has a limit point, which is π(Y ) for some Y ∈ T .
We will show that, up to replacing Y with another point in its L2-orbit, τσ(Y ) = τσ(σ(Y )).

First we define a function F , analogous to the one in the proof of Proposition 4.1. Since
the sequence τσ(Xi) = d(Xi, Xi+1) is non-negative and strictly decreasing (by the weakly
contracting assumption), it converges to some δ ≥ 0. We define F : T/L2 → [0,∞) by

F
(
π(X)

)
= min

g∈L2

{∣∣τσ(g ·X)− δ
∣∣ +

∣∣τσ(σ(g ·X))− δ
∣∣} .

Assuming F is well defined we have

F
(
π(Xi)

)
≤ |τσ(Xi)− δ| + |τσ(Xi+1)− δ|

for each i. It follows that F
(
π(Xi)

)
→ 0.

We now use F to analyze Y . Again assuming F is well defined, it is continuous. Therefore,
the statement F

(
π(Xi)

)
→ 0 implies that F

(
π(Y )

)
= 0. Thus, after possibly replacing Y with

a different point in its L2-orbit, we have∣∣τσ(Y )− δ
∣∣ +

∣∣τσ(σ(Y ))− δ
∣∣ = 0.

It follows that τσ(Y ) and τσ(σ(Y )) are both equal to δ, and in particular are equal to each
other, as desired.

It remains to prove that F is well defined. Similar to the proof of Proposition 4.1, the
intertwining with φ gives that

F
(
π(X)

)
= min

g∈L2

{∣∣d(X, g−1φ(g) · σ(X)
)
− δ
∣∣+
∣∣d(σ(X), φ(g)−1φ2(g) · σ2(X)

)
− δ
∣∣} .

Again, since the action of P on T is properly discontinuous, the same is true for L2. Thus, the
minimum exists and F is well defined. �

Forward translations along rays. The next proposition is a version of one of the steps of the
Bers proof of the Nielsen–Thurston classification [7, Section 13.6.4, Step 1]. Here we generalize
to the case where τσ is non-expanding. The proof is almost unchanged. We begin by defining
forward translation along a ray.

Let γ be a ray in a metric space T , and say that γ has a unit speed parameterization as
γ : [0,∞) → T . For any interval J ⊂ [0,∞) we have a (possibly infinite) segment γ|J of γ.
The forward translation of γ|J along γ by d is the segment γ : J → γ given by

γ(t) 7→ γ(t+ d).

This map is an isometric embedding of γ into itself.

Proposition 4.3. Let (T, P, φ, σ) be a synthetic Nielsen–Thurston package. Suppose τσ is
positive and that X ∈ T realizes τσ. Let γ be the geodesic ray from X through σ(X). Then σ|γ
is the forward translation of γ by τσ. In particular, σ is not weakly contracting.

Proof. Let Y be a point on γ between X and σ(X). Using the triangle inequality twice and
the assumption that σ is non-expanding, we have

d(Y, σ(Y )) ≤ d(Y, σ(X)) + d(σ(X), σ(Y ))

≤ d(Y, σ(X)) + d(X,Y )

= d(X,σ(X))

= τσ.
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By the definition of τσ as an infimum, each of the above inequalities is an equality. By the
first (in)equality and the assumption that T is uniquely geodesic, it must be that σ(Y ) lies
on γ. By the second (in)equality, σ preserves the distance between X and Y . Combining the
last two statements and the fact that Y was arbitrary, we find that the restriction of σ to the
initial segment of γ from X to σ(X) is forward translation along γ by τσ. Inductively, we see
that the restriction of σ to the segment of γ from σk(X) to σk+1(X) is forward translation
along γ by τσ, whence the proposition. �

5. Proof of the Übertheorem: Non-exceptional cases

In this section we combine the results of the previous three sections to prove the Nielsen–
Thurston Übertheorem in the non-exceptional cases. In preparation, we present some of the
requisite terminology and state and prove a series of three lemmas.

Modulus. For r > 1 the modulus of the standard annulus 1 < |z| < r is ln r/2π. The modulus
of an an arbitrary annulus (annular domain) is the modulus of the unique standard annulus
to which it is biholomorphic. We note that the standard annulus is conformally equivalent to
a Euclidean cylinder of height ln r and circumference 2π.

For X ∈ Teich(Σ) and A ⊆ Σ and embedded annulus we denote by µx(A) the modulus of
A. Similarly, for γ a simple closed curve in Σ we denote by µX(γ) the supremum of µX(A)
over all embedded annuli A in Σ homotopic to γ. We denote by µ(X) the supremum of µX(γ)
as γ ranges over all simple closed curves in Σ.

Covering modulus. We require another version of modulus. Let γ be an essential closed curve
in a Riemann surface X. There is an annular cover X̃γ → X corresponding to γ, which is
unique up to biholomorphism. We define the covering modulus of γ to be

µ̃X(γ) = µ(X̃γ).

It is a fact that µ̃X(γ) is π/`X(γ), where `X(γ) is the length of the geodesic in the free homotopy
class of γ, with respect to the hyperbolic metric associated to X.

The Margulis number. The Margulis number ε is a real number with the properties that (1)
any closed curve γ with covering modulus µ̃X(γ) > ε is a multiple of a simple closed curve,
and (2) if γ1 and γ2 are simple closed curves with µX(γi) ≥ ε, then there are disjoint annuli
homotopic to γ1 and γ2, respectively, each of modulus ε′ = µX(γi) − 1; see [7, Lemma 13.6].
The second fact, sometimes called the collar lemma, implies that if two simple closed curves
in Σ have modulus greater than or equal to ε then they are homotopic to disjoint curves.

Let ξ(Σ) denote the maximum number of pairwise disjoint, pairwise non-homotopic, simple
closed curves in Σ. This is an upper bound for the number of homotopy classes of simple closed
curves γ with µX(γ) > ε.

Modulus-degree inequality. Let f : X ′ → X be a (holomorphic) covering map of Riemann
surfaces, and let γ′ be a component of f−1(γ). We denote by deg f |γ′ the degree of the
restriction of f to γ′. Then

µX′(γ
′) ≤ µX(γ) + 1

deg f |γ′
.

This fact, which we refer to as the modulus-degree inequality, follows from two other facts:
(1) the covering modulus multiplies by exactly deg f |γ′ under the cover, and (2) the fact that

µ̃X(γ)− 1 ≤ µX(γ) ≤ µ̃X(γ).
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The right-hand inequality here is immediate, since an annulus in X lifts to an annulus in X̃γ .
The left-hand inequality follows from the quantitative version of the collar lemma given above.
The left-hand inequality also follows from Maskit’s comparisons between extremal length and
modulus [14, Propositions 1 and 2].

The Grötzch inequality. The next ingredient is a version of the classical Grötzch inequality,
adapted from the case of rectangles to the case of annuli; see [7, Theorem 11.10]. It states that
given X,Y ∈ Teich(Σ), a K-quasiconformal map h : X → Y , and a simple closed curve γ in Σ
we have

1

K
µX(γ) ≤ µY (h(γ)) ≤ KµX(γ).

Applying this fact to the Teichmüller map h : X → Y we obtain

1

e2d(X,Y )
µX(γ) ≤ µY (γ) ≤ e2d(X,Y )µX(γ).

Finding stable multicurves. If X ∈ Teich(Σ) and Γ is a multicurve in Σ, let µX(Γ) denote the
vector of moduli of the components of Γ (we emphasize that each component is the modulus
of a single curve). Also, for a dynamical branched cover f : Σ → Σ and Γ a multicurve in Σ,
we define the full preimage of Γ to be the set of all homotopy classes of simple closed curves
in Σ that map to components of Γ under a power of f . The following lemma is essentially the
same as Proposition 8.1(a) in Douady–Hubbard.

Lemma 5.1. Let f : Σ → Σ be a dynamical branched cover, and let D > 0. There exists an
N > 0, depending only on Σ, deg f , and D with the following property: for any multicurve Γ
in Σ and any X ∈ Teich(Σ) with

µX(Γ) > (N, . . . , N) and τσf (X) ≤ D,

the full preimage of Γ is an f -stable multicurve.

Proof. Let K = e2D, and let N = (Kd)ξ(Σ)ε, where d is the degree of f . For each j ≥ 0 let Γj
be the collection of all homotopy classes of essential curves in f−i(Γ) for 0 ≤ i ≤ j.

We claim that for 0 ≤ j ≤ ξ(Σ) the collection Γj is a multicurve. By the properties of the
Margulis constant ε, it suffices to show that each component of Γj has modulus bounded below
by ε. We now prove this. Since σf is non-expanding and τσf (X) ≤ D, we have τσif

(X) ≤ iD

for all i ≥ 0, so each of the associated Teichmüller maps X → σif (X) is Ki-quasiconformal.

Let γ′ be a component of Γj ; say γ′ is a component of f−i(Γ). By the Grötzch inequality, we
have

µX(γ′) ≥
µσif (X)(γ

′)

Ki
≥ µX(γ)

Kidi
≥ N

Kidi
≥ N

Kξ(Σ)dξ(Σ)
= ε

(for the second inequality, we use the fact that if we restrict a degree di cover to a cover of
annuli, then the latter has degree at most di). Since γ′ was arbitrary, the claim follows.

We next claim that some Γj is f -stable. Indeed, we have inclusions Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γξ(S).
Since Γξ(S) is a multicurve, we know that |Γξ(S)| ≤ ξ(S), so there exists a j < ξ(S) such that
Γj = Γj+1, which implies that Γj is an f -stable multicurve, as desired. �

Uniform contraction. The following lemma is a basic linear algebra fact. We will use it in the
proof of the Übertheorem to show that if a stable multicurve is not a strong reduction system,
then under pullback (by a suitable power) the moduli of the curves fails to increase.
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For a matrix A, let ‖A‖ denote the operator norm of a matrix A with respect to the sup
norm on Rn. We also denote by ‖~v‖ the sup norm of ~v ∈ Rn. We denote by ρ(A) the spectral
radius of A.

Lemma 5.2. There exists a number p = p(Σ, d) with the following property. If f : Σ → Σ
is a dynamical branched cover of degree d with f -stable multicurve Γ and associated transition
matrix A then

ρ(A) < 1 ⇒ ‖Ap‖ < 1

2
.

Before giving the proof of Lemma 5.2, we remark that for a matrix A, the condition that
ρ(A) < 1 does not in general put any upper bound on ‖A‖.

Proof of Lemma 5.2. It follows from Jordan canonical form that if ρ(A) < 1 then ‖An‖ → 0
as n→∞. In particular, there exists an NA such that ‖An‖ < 1/2 for all n ≥ NA.

For a given degree d and a given Σ there are only finitely many possible transition matrices,
and in particular finitely many for which ρ(A) < 1. Taking the maximum of all corresponding
NA yields the desired exponent p. �

The transition matrix versus the pullback map. Let f : Σ→ Σ be a dynamical branched cover.
If Γ is an f -stable multicurve, there is an associated transition matrix M . The ij-th entry is

mij =
∑
δ

1

deg f |δ

where δ is a component of f−1(γj) homotopic in Σ to γi. Here, deg f |δ is the degree of the
map f |δ : δ → γj , thought of as a map S1 → S1.

For an f -stable multicurve Γ, the next lemma bounds (under certain conditions) the effect
of σf on µX(Γ) in terms of the associated transition matrix. This statement incorporates
Theorem 7.1, Proposition 8.1(b), and Proposition 8.2 in Douady–Hubbard as well as part of
their proof of Proposition 8.2.

For the proof we use the notion of a latitude in an annulus. By definition, an annulus
A in a Riemann surface is a subset that is biholomorphic to a standard annulus Ar given by
1 < |z| < r. A latitude in Ar is any circle centered at 0, and a latitude in A is any corresponding
circle in A (under a biholomorphism). A biholomorphism of Ar preserves latitudes, and so the
latitudes in A form a well-defined foliation of A.

Lemma 5.3. Fix d ≥ 2 and Σ a marked surface. Let b = (d|P | + 1)(ε + 2). If f : Σ → Σ
is a dynamical branched cover of degree d with stable multicurve Γ and associated transition
matrix M , and for some X ∈ Teich(Σ) the multicurve Γ includes all simple closed curves γ
with µX(γ) > ε, then

µσf (X)(Γ) ≤MµX(Γ) + (b, . . . , b).

Proof. The given inequality is a vector inequality, which must hold separately for each com-
ponent. Specifically, for each curve γ of Γ, we must prove that

µσf (X)(γ) ≤
∑
δ∈∆γ

µX(γ)

deg f |δ
+ b

where ∆γ is the set of all components of ∆ = f−1(Γ) that are homotopic to γ in Σ. Let A be
an annulus in σf (X) homotopic to γ. It suffices to prove that

µσf (X)(A) ≤
∑
δ∈∆γ

µX(γ)

deg f |δ
+ b.
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We now set about proving this inequality.
Let X̃ be the marked Riemann surface obtained from σf (X) by adding additional marked

points: the set of marked points P̃ is the full f -preimage of the marked points in X. We have
|P̃ | ≤ d|P |, and hence the maximal number of parallel, disjoint curves in X̃ is bounded above
by d|P |+ 1. In particular, |∆γ | ≤ d|P |+ 1.

Decompose A into sub-annuli A1, . . . , An by cutting it along all latitudes that pass through
marked points of X̃. For each i, let αi be a latitude of Ai; we have µX̃(αi) ≥ µX̃(Ai). The

curves α1, . . . , αn are pairwise non-isotopic in X̃—this is obvious except for the bottom curve
α1 and the top curve αn, but if n ≥ 2 then P̃ and hence P must be nonempty, in which case
any point of P separates α1 from αn. As in the last paragraph, it follows that n ≤ d|P | + 1.
Since we decomposed A along latitudes, we have

µσf (X)(A) =

n∑
i=1

µX̃(Ai).

Set
A≤ = {Ai | µX̃(Ai) ≤ ε+ 1} and A> = {Ai | µX̃(Ai) > ε+ 1}

where ε is the Margulis constant. We will prove two claims that provide upper bounds on the
sum of moduli in A≤ and A> in turn, beginning with A≤.

We first claim that ∑
A≤

µX̃(Ai) ≤ (d|P |+ 1)(ε+ 1).

This follows from the fact that n ≤ (d|P |+ 1), and the definition of A≤.
We next claim that ∑

A>

µX̃(Ai) ≤
∑
δ∈∆γ

µX(γ)

deg f |δ
+ (d|P |+ 1).

Consider an Ai ∈ A>. Since each point of f−1(P ) ⊆ X̃ is marked, the image of αi under f is
a curve γi in X. This curve satisfies

µ̃X(γi) = µ̃X̃(αi) ≥ µX̃(αi) ≥ µX̃(Ai) > ε+ 1,

Here the first step uses the fact that the annular cover for γi is the same as the annular cover
for αi, the second step uses the fact that any annulus homotopic to αi lifts to the annular
cover, the third step uses the fact that Ai is an annulus homotopic to αi, and the last step
uses the definition of A>.

Since µ̃X(γi) > ε + 1 > ε, we have that γi is homotopic to a multiple of a simple closed
curve for each Ai ∈ A>, and µX(γi) > ε by the collar lemma. By hypothesis, it follows that γi
is homotopic to a multiple of a component of Γ. Then αi must be homotopic to a multiple of
some curve δi ∈ ∆γ , and since αi is simple it must be homotopic to δi. By the modulus-degree
inequality, we have

µX̃(Ai) ≤ µX̃(αi) = µX̃(δi) ≤
µX(γ) + 1

deg f |δi
.

Since the curves αi are pairwise non-isotopic in X̃, the δi’s are all distinct, so∑
A>

µX̃(Ai) ≤
∑
A>

µX(γ) + 1

deg f |δi
≤
∑
δ∈∆γ

µX(γ) + 1

deg f |δ
≤
∑
δ∈∆γ

µX(γ)

deg f |δ
+ (d|P |+ 1).

The first inequality is as above, the second inequality comes from the fact that the δi’s are all
distinct, and the third comes from two facts, namely, that 1/(deg f |δ) ≤ 1 and that |∆γ | ≤
d|P |+ 1. This completes the proof of the claim.
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We may now complete the proof of the lemma. We have

µσf (X)(A) =
n∑
i=1

µX̃(Ai) =
∑
A≤

µX̃(Ai) +
∑
A>

µX̃(Ai) ≤
∑
δ∈∆γ

µX(γ)

deg f |δ
+ b

The first equality was explained above. The second equality is true since {Ai} is equal to the
disjoint union A≤ ∪ A>. The last inequality is the combination of the two claims and the
definition of b. �

Mapping class groups and virtual endomorphisms. Let Σ = (S, P ). The pure mapping class
group PMod(Σ) is the group of homotopy classes of homeomorphisms of Σ, where homeomor-
phisms and homotopies are required to fix P pointwise.

Let f : Σ→ Σ be a dynamical branched cover. There is an associated virtual endomorphism

φ : PMod(Σ) 99K PMod(Σ)

defined by lifting (homotopy classes of) homeomorphisms through f . It follows from the usual
lifting criterion in algebraic topology and the fact that the degree of f is finite that the domain
of φ has finite index in PMod(Σ). Since isotopies always lift through f , the map φ is well
defined.

There is a natural action of PMod(Σ) on Teich(Σ) by pullback: given h ∈ PMod(Σ) and
X ∈ Teich(Σ) we obtain h ·X by pulling back the complex structure given by a representative
of X through a representative of h. It follows from the definitions that the pullback map σf is
intertwined with φ.

Mumford’s compactness criterion. We refer to the quotient of Teich(Σ) by PMod(Σ) as moduli
space (often moduli space refers to the quotient by a larger group, the full mapping class group).
Mumford’s compactness criterion states that if Xi is a sequence in Teich(Σ) and if the images
of the Xi leave every compact set in moduli space then lim supµ(Xi)→∞.

Proof of the Übertheorem: Non-exceptional cases. As in the statement of the theorem, f : Σ→
Σ is a dynamical branched cover where Σ = (S, P ). Assume that f is not exceptional. Let
φ : PMod(Σ) 99K PMod(Σ) be the virtual endomorphism associated to f , and let σ : Teich(Σ)→
Teich(Σ) denote the pullback map.

It follows from Teichmüller’s theorems that the space Teich(Σ) is uniquely geodesic and that
all maximal geodesics are bi-infinite. It is also known that the action of PMod(Σ) on Teich(Σ)
is properly discontinuous [7, Theorem 12.2]. We already stated that σ is intertwined with φ.
By Proposition 3.1, the map σ is non-expanding. In other words, the collection

(Teich(Σ),PMod(Σ), φ, σ)

is a (not-at-all synthetic) synthetic Nielsen–Thurston package.
Following the Bers proof of the Nielsen–Thurston classification, we treat three cases in turn:

(1) τσ = 0 and is realized
(2) τσ is not realized
(3) τσ > 0 and is realized

We will show in the three cases that f is holomorphic, strongly reducible, and pseudo-Anosov,
respectively.

Case 1. In this case it follows from the definitions that f preserves a complex structure on Σ,
which implies that f has a holomorphic representative.
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Case 2, d = 1. Let D = τσ + 1, and let N be the resulting constant from Lemma 5.1. Let
Xi be a sequence of points in Teich(Σ) with τσ(Xi) → τσ. By Proposition 4.1, the (images
of the) Xi leave every compact subset of moduli space. By Mumford’s compactness criterion,
we may choose a k so that µ(Xk) > N . In particular there is a simple closed curve γ in Σ
with µXk(γ) > N . By Lemma 5.1, the full preimage of γ is a stable multicurve Γ. This Γ is a
reduction system and hence a strong reduction system.

Case 2, d > 1. By Proposition 3.1, some iterate of σ is weakly contracting. Applying Propo-
sition 4.2 to this iterate, we conclude that (the image of) every orbit leaves every compact
subset of moduli space. Fix one such orbit Yi. Again by Mumford’s compactness criterion the
µ(Yi) tend to infinity.

We now introduce several constants. Let p = p(Σ, d) the the constant obtained from
Lemma 5.2. Since σ is non-expanding, there exists a D > 0 so that τσ(Yi) ≤ D for all i,
namely, D = τσ(Y0). For this D, let N = N(Σ, d,D) be the constant from Lemma 5.1.

Next, let b = b(Σ, d) be the constant from Lemma 5.3, and let

r = max
M

∥∥Mp−1 + · · ·+M
∥∥∥∥(b, . . . , b)

∥∥
where the maximum is taken over all transition matrices M for dynamical branched covers of
degree d over Σ (there are finitely many such matrices). Finally, let

C = max{N, 2r, ε}.

Since lim supµ(Yi) =∞, there exists a smallest n with µ(Yn) > C. Increasing C if necessary,
we may assume that n ≥ p. Let γ be a simple closed curve in Σ so that µYn(γ) > C. Then
µYn(γ) > N , so Lemma 5.1 tells us that the full f -preimage Γ of γ is an f -stable multicurve.

Suppose for the sake of contradiction that Γ is not the multicurve underlying some strong
reduction system for f , that is, the transition matrix M for Γ has ρ(M) < 1. By Lemma 5.2
we have ‖Mp‖ ≤ 1/2. We thus have

µYn(γ) ≤ ‖µYn(Γ)‖ ≤
∥∥Mp µYn−m(Γ) + (Mp−1 + · · ·+M)(b, . . . , b)

∥∥
≤ ‖Mp‖ ‖µYn−p(Γ)‖+

∥∥Mp−1 + · · ·+M
∥∥∥∥(b, . . . , b)

∥∥
<

1

2
C + r ≤ 1

2
C +

1

2
C = C.

In order, we used the definition of the sup norm, Lemma 5.3 (iteratively), the triangle inequality
and the definition of the operator norm, Lemma 5.2 and the choices of n and r, the choice of
C, and basic algebra. The resulting inequality µYn(γ) ≤ C contradicts the earlier assumption
that µYn(γ) > C, and we are done.

Case 3. Let X ∈ Teich(Σ) be a point with τσ(X) = τσ. Let γ be the unique geodesic ray passing
through X and σ(X). Since τσ > 0 by assumption, Proposition 4.3 implies the restriction of
σ to γ is forward translation by τσ. In particular, σ2(X) lies on γ and d(X,σ2(X)) is twice
d(X,σ(X)).

The ray γ is determined by an ordered pair of measured foliations (F+,F−) on Σ, each well
defined up to scaling and isotopy. The Teichmüller map h : X → σ(X) has (F+,F−) as its
associated foliations.
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As in Section 3 there is a commutative diagram

(σ(X), f∗(F+,F−)) (σ2(Y ), f∗(λF+, 1
λ F
−))

(X, (F+,F−)) (σ(X), (λF+, 1
λ F
−)),

hf

f f

h

where hf is a pseudo-Teichmüller map with the same dilatation as h and where λ = eτσ . Since
d(X,σ(X)) = d(σ(X), σ2(X)), it follows that hf is in fact a Teichmüller map.

We claim that the top-left and bottom-right corners of the diagram are scalar multiples.
More precisely, we claim

f∗(F+,F−) = ((
√
dλ)F+, (

√
d/λ)F−),

where d = deg(f). This claim gives that f is pseudo-Anosov, and so it remains to prove the
claim. (One is tempted to worry about the fact that X 6= σ(X), but if we forget the complex
structures, we can replace both X and σ(X) in the claim with Σ, making it clear how the
claim implies that f is pseudo-Anosov.)

Firstly, the underlying (unmeasured) foliations must be equal, for if not, the composition
hf ◦ h would have dilatation less than λ2 and hence d(X,σ2(X)) would be strictly less than
2d(X,σ(X)), a contradiction. As for the measures, the Euclidean areas of the pairs of foliations
on the bottom row are equal, and pulling back by f multiplies area by d, and so the claim
follows.

Exclusivity. We now prove the exclusivity statement in the non-exceptional case. As discussed
in the introduction—and proved in the appendix—a strong reduction system is an obstruction
to holomorphicity when d > 1. This implies that cases 1 and 2 are exclusive when d > 1.
We would now like to show that cases 2 and 3 are exclusive. To this end, we first point out
that in the above argument for Case 3, Proposition 4.3 further implies that σ is not weakly
contracting. Since we are in the non-exceptional case, Proposition 3.1 then implies deg f = 1,
that is, f is an element of the mapping class group of Σ. Therefore, the exclusivity of Cases
2 and 3 follows as in the Nielsen–Thurston classification theorem (a pseudo-Anosov mapping
class stretches the lengths of all curves exponentially, but a reducible mapping class does not
[7, Theorem 14.23]).

Uniqueness. Finally, we prove the uniqueness statements of the theorem. If f is non-exceptional
with deg f > 1 then it follows from Proposition 3.1 that σf has an iterate that is weakly
contracting. In particular, σf has at most one fixed point, and so there is at most one complex
structure for which f is holomorphic. The other uniqueness statement is the same as in the case
of mapping class groups, since (as above) all non-exceptional pseudo-Anosov maps have degree
1. See [9, Corollary 12.4] for the argument. The idea is that, under iteration, a pseudo-Anosov
map acts with source-sink dynamics on the space of projective measured foliations. �

We record here two statements that were established in the course of the proof of the
Übertheorem in the non-exceptional cases. These statements will be applied in the proof for
the exceptional cases.

Proposition 5.4. Let f : Σ → Σ be a dynamical branched cover. Suppose that the pullback
map σf has an orbit whose image in moduli space leaves every compact set. Then f is strongly
reducible.
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Proposition 5.5. Let f : Σ → Σ be a dynamical branched cover. Suppose that the pullback
map σf preserves a geodesic ray in Teich(Σ) and acts by forward translation on that ray. Then
f is pseudo-Anosov.

Even though our proof of Case 3 in the non-exceptional case reduces to the case of deg f = 1,
we gave the argument for arbitrary degree precisely so that we could give Proposition 5.5.

6. Proof of the Übertheorem: Exceptional cases

In this section we prove the Übertheorem in the remaining cases, the exceptional cases. As
above, these are the cases where deg f > 1 and f either a torus map or a sphere map obtained
from a torus map through the hyperelliptic involution.

The proof uses many of the tools developed in Section 5. The main obstacle is that Proposi-
tion 2.1 gives no information in the exceptional cases, and hence Proposition 3.1 does not hold
(as we will see, there are indeed cases where the pullback map has no iterate which is a weak
contraction, namely, the cases of affine exceptional maps). We will instead take advantage of
a product structure on Teichmüller space that is special to the exceptional cases. (In the case
of an unmarked exceptional map, the product structure is trivial, and so these cases could be
equally well have been addressed in Section 5.)

The paper by Douady–Hubbard gives a detailed account of the dynamical branched covers
with Euclidean orbifold, including a catalogue of all such maps [6, Section 9].

Exceptional surfaces and maps. In order to give proofs that work simultaneously for the torus
and the sphere, we will slightly alter our notation for a marked surface. Specifically, in this
section, a marked surface Σ is a pair (S, P ) where S = (S0, P0) itself is a surface with marked
points in the usual sense (so S0 is a closed surface) and P ⊆ S0 \ P0. The relevant marked
surfaces Σ for this section are ((T 2, ∅), P ) and ((S2, P0), P ) with |P0| = 4.

When we say that a dynamical branched cover f : Σ→ Σ is exceptional, we will take Σ to
be (S, P ) where S = (S0, P0) as above and P0 is the post-critical set of f . So in all cases P is
the set of marked points that are not post-critical.

Teichmüller maps in the exceptional cases. For the torus T 2, a Teichmüller map is the same
thing as an orientation-preserving affine homeomorphism. This follows from the same reasoning
as in the resolution of Grötzsch’s problem about extremal maps between rectangles [7, Theorem
11.10]. As a consequence, we see that Teichmüller maps on T 2 are closed under composition.

We can identify Teich(T 2) with Teich(S1,1), the Teichmüller space of the torus with one
marked point (this is the space of complex structures on the torus, modulo pullback by dif-
feomorphisms that fix the marked point and are homotopic to the identity). For the latter,
the Teichmüller maps are exactly the orientation-preserving linear homeomorphisms and they
are thus unique. In what follows, when we refer to the Teichmüller map between two points
of Teich(T 2), we mean the linear one (here we are abusing the identification of Teich(T 2) with
Teich(S1,1)).

Every point in Teich(T 2) comes equipped with a holomorphic hyperelliptic involution. The
quotient is a Riemann surface that may be regarded as a sphere with four marked points.
Each marked point corresponds to a fixed point of the hyperelliptic involution, also called a
Weierstrass point. This correspondence gives a homeomorphic identification of Teich(T 2) with
Teich(S0,4), the Teichmüller space of a sphere with four marked points.

The Teichmüller maps for S0,4 are exactly the quotients under the hyperelliptic involution
of the affine maps of T 2 preserving the set of four Weierstrass points. By the same token, the
above correspondence of Teich(T 2) with Teich(S0,4) is an isometry.
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A product decomposition on Teichmüller space. Let Σ = (S, P ) be an exceptional marked
surface. Again, either S is (T 2, ∅), or it is S = (S2, P0) with |P0| = 4, and in either case
P ∩ P0 = ∅. There is a forgetful map

πv : Teich(Σ)→ Teich(S)

obtained by forgetting the set of marked points P . Let X� ∈ Teich(S) be some basepoint for
Teich(S) (for instance when S = T 2, we may take X� to be the unit square torus where the
generators for π1(T 2) have length 1). We denote π−1

v (X�) by Teich(X�, P ).
Having defined Teich(X�, P ) we may define a map

ν : Teich(S)× Teich(X�, |P |)→ Teich(Σ).

The formula for ν is
ν(X,Y ) = (hX)∗(Y )

where hX : X� → X is the Teichmüller map and (hX)∗ is the push forward of the complex
structure Y . The marked points in ν(X,Y ) are defined to be the hX -images of the marked
points in Y .

In what follows we will refer to a subset Teich(S) × {Y } of Teich(S) × Teich(X�, |P |) →
Teich(Σ) as a horizontal slice, and we will write it as Teich(S) × Y for simplicity. We have a
similar definition and notation for vertical slices.

Proposition 6.1. Let Σ = (S, P ) be an exceptional marked surface and fix some X� ∈
Teich(S).

(1) The map
ν : Teich(S)× Teich(X�, |P |)→ Teich(Σ)

is a homeomorphism.
(2) The map ν restricts to an isometry on each horizontal slice Teich(S)× Y .
(3) Two points Z1, Z2 ∈ Teich(Σ) lie in the ν-image of a slice Teich(S)× Y if and only if

the Teichmüller map between them has no 1-pronged singularities at points of P .
(4) The projection πv : Teich(Σ)→ Teich(S) is non-expanding. Further d(πv(Z1), πv(Z2)) =

d(Z1, Z2) if and only if Z1 and Z2 lie in the same horizontal slice Teich(S)× Y .

Proof. We begin with the first statement. To prove it, we define an inverse map to ν. The
inverse has two coordinate functions. The first is the projection map πv. The second coordinate
function is:

ρ(Z) = h∗X(Z)

where X = πv(Z) and h∗X is pullback by the Teichmüller map hX : X� → X. The maps ν,
πv, and ρ are well defined and continuous by Teichmüller’s theorems. The maps ν and πv × ρ
are inverses of each other by definition, and so both are homeomorphisms, proving the first
statement.

We proceed to the second statement. Let (X1, Y ) and (X2, Y ) be two points of Teich(S)×
Teich(X�, |P |), and let Z1 and Z2 be their ν-images. Let h : X1 → X2 be the Teichmüller
map. Since ν is defined in terms of Teichmüller maps from X� and since Teichmüller maps
of exceptional surfaces are closed under composition, it follows that h may be regarded as the
Teichmüller map Z1 → Z2. Since we have Teichmüller maps X1 → X2 and Z1 → Z2 with the
same stretch factor (in fact it is the same underlying map), the second statement follows.

The third statement follows from the previous paragraph. Indeed, if two points lie in the
ν-image of a horizontal slice, then we have from the previous paragraph a Teichmüller map
with the desired properties. For the other direction, suppose h : Z1 → Z2 is a Teichmüller
map where Zi = ν(Xi, Yi) and suppose h has no singularities at the points of P . We would
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like to show Y1 = Y2. We may regard h as a Teichmüller map X1 → X2. If hi : X� → Xi is
the Teichmüller map for each i then h ◦ h1 = h2. Since Yi = h∗i (Zi), we have

Y2 = h∗2(Z2) = (h ◦ h1)∗(Z2) = h∗1h
∗(Z2) = h∗1(Z1) = Y1,

We now prove the fourth statement. The projection πv is non-expanding because a Teichmüller
map h : Z1 → Z2 induces a pseudo-Teichmüller map h̄ : πv(Z1) → πv(Z2), as in Section 3.
The pseudo-Teichmüller map h̄ is a Teichmüller map if and only if h has no singularities at a
point of P . The fourth statement now follows from the third. �

Since Teichmüller maps between points in a horizontal slice are affine, the space Teich(X�, P )—
or indeed any of the vertical slices in the product decomposition in Proposition 6.1—can be
identified with the space of affine structures on Σ.

Pullback and the product decomposition. Given the product decomposition from Proposi-
tion 6.1, our next goal is to elaborate on the interaction between the product structure and
the pullback map. The statement of the following proposition uses the following observation:
an exceptional dynamical branched cover f : (S, P ) → (S, P ) induces a dynamical branched
cover f̄ : S → S. In particular, there is an induced pullback map on Teich(S).

Proposition 6.2. Let Σ = (S, P ) and let f : Σ → Σ be an exceptional dynamical branched
cover of degree d.

(1) The pullback map σf preserves the product structure on Teich(Σ).
(2) If σf preserves a horizontal slice H of Teich(Σ) then f is affine, σf |H is an isometry,

and σf |H is conjugate under πv|H to the induced pullback map σhorf on Teich(S).

(3) If σf preserves no horizontal slice of Teich(Σ), then all σf -orbits are weakly contracting.

For an exceptional Σ = (S, P ) we have that Teich(S) is isometric to H2 (up to scale). And
by Proposition 6.1(4) the restriction of πv to each horizontal slice of Teich(Σ) is an isometry
to Teich(S). Thus, Proposition 6.2(2), implies that σf is isometrically conjugate, through πv,
to an isometry of H2.

Proof of Proposition 6.2. We begin with the first statement. It follows from the definitions
that σf̄ ◦ πv = πv ◦ σf , and hence that σf preserves the set of vertical slices of the product.

Now suppose that Z1 and Z2 lie in the same horizontal slice. By Proposition 6.1(3) the
Teichmüller map h : Z1 → Z2 has no 1-pronged singularities at P . Since the map h is
homotopic to the identity, it has a lift through f . We denote this lift by h̃. By the definition of
the pullback, we have that h̃ maps σf (Z1) to σf (Z2), in the sense that h̃∗(σf (Z2)) = σf (Z1).

By Proposition 6.1(3), the first statement is a consequence of the following claim: the map

h̃ is the Teichmüller map σf (Z1) → σf (Z2) and the singularities for the associated foliations

all lie at P0. Since h̃ is the lift of h through f , it is a pseudo-Teichmüller map whose foliations
are the preimages of the foliations for h. Since the 1-pronged singularities for the latter all lie
at points of P0, and since in both exceptional cases the preimage of P0 is the union of P0 with
the set of critical points for f , it follows that the foliations for h̃ have 1-pronged singularities
only at P0 and that h̃ is a Teichmüller map, as desired.

Suppose now that σf preserves a horizontal slice H of Teich(Σ). From the equality σf̄ ◦πv =

πv ◦ σf used above, we conclude that σf |H is conjugate under πv|H to the induced pullback

map σhorf : Teich(S)→ Teich(S), as in the second statement.

We next prove that if σf preserves a horizontal slice, then f is affine (as in the second state-
ment). By the definition of the product structure on Teich(Σ), its horizontal slices correspond
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exactly to the (singular) affine structures on Σ. Therefore, if f preserves a horizontal slice, it
preserves an affine structure, and hence is affine.

The remaining two statements (really the third statement and the second conclusion of
the second statement) will be consequences of the following claim: if X and Y are points of
Teich(Σ), then d(σf (X), σf (Y )) is strictly less than d(X,Y ) if and only if X and Y lies in
different horizontal slices. Indeed, by Proposition 6.1(3), X and Y lie in different horizontal
slices if and only if the foliations for the Teichmüller map h : X → Y have a 1-pronged
singularity at a point of P . Since the points of P are not post-critical (by definition), the

latter is true if and only if the foliations for the lifted map h̃ : σf (X) → σf (Y ) have a 1-
pronged singularity at a point of f−1(P ). Since f−1(P ) is disjoint from P0 (again using the
fact that the points of P are not post-critical), the claim now follows from a second application
of Proposition 6.1(3).

Suppose that σf preserves a horizontal slice H. By the claim and the fact that σf is non-
expanding (Proposition 3.1(1)), it follows that σf |H is an isometry.

Finally, if σf preserves no horizontal slice then by the first statement it follows that for any
Z ∈ Teich(Σ), the image σf (Z) lies in a different horizontal slice of Teich(Σ). Combining this
with the claim completes the proof. �

Proof of the Übertheorem: Exceptional cases. As in the statement of the theorem, f : Σ → Σ
is an exceptional dynamical branched cover with degree d > 1. In particular, we have that
Σ = (S, P ) with either S = (T 2, ∅) or S = (S2, P0) with |P0| = 4. In either case, the marked
points of S are the post-critical points for f .

By Lemma 6.2(1), σf preserves the product structure on Teich(Σ). We treat two cases,
according to whether or not σf preserves a horizontal slice of Teich(Σ).

If σf preserves no horizontal slice then by Lemma 6.2(3), each σf -orbit is weakly contracting.
By Proposition 4.2, each σf -orbit leaves every compact subset of moduli space. Then by
Proposition 5.4, the map f strongly reducible.

Now suppose σf does preserve a horizontal slice H. By parts (2) and (3) of Proposition 6.2,
the restriction σf |H is isometrically conjugate to an isometry ϕ of Teich(S) ∼= H2. There are
three possibilities for ϕ: it can be elliptic, loxodromic, or parabolic.

If ϕ is elliptic then σf |H, hence σf , has a fixed point and f is holomorphic. And if ϕ is
loxodromic, then by Proposition 6.2(2) and Proposition 5.5, the map f is pseudo-Anosov.

In the remainder of the proof we deal with the case where ϕ is parabolic. In this case,
the translation length of ϕ is 0. It then follows from Proposition 6.2(2) that the translation
length τf is 0. It also follows from Proposition 6.2(2) and Proposition 6.1(4) that this trans-
lation length is not realized by f (translation distances in Teich(Σ) are no smaller than the
corresponding translation distances in H).

By Proposition 6.2(2), the map f is an affine torus map or a hyperelliptic quotient of an
affine torus map. We first treat the case where Σ is a torus and f is affine.

Since ϕ is parabolic, the linear map homotopic to f must have a single repeated eigenvalue,
namely

√
d. We can change coordinates so that f is of the form( √

d ∗
0
√
d

)
where d = deg(f). It must be that

√
d is a natural number. The preimage under f of any

horizontal curve in T 2 is a collection of horizontal curves. We will construct a strong reduction
system consisting of horizontal curves.
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Let Γ = {γ1, . . . , γk} be a maximal multicurve in Σ consisting of horizontal curves. The
number of components k is the same as the number of horizontal curves in T 2 that pass
through a marked point of Σ (although such curves are not permitted to be components of
Γ, exactly because they pass through marked points). We label each component γi by its
modulus (equivalently, the supremum of Euclidean widths of annuli in Σ that have horizontal
boundary curves and that contain the given γi). These numbers are the vertical distances
between marked points with distinct, but consecutive, coordinates in the vertical direction.

We claim that the resulting labeled multicurve, which we still call Γ, is a strong reduction
system for f . For each i, we may choose a closed annulus Ai that has horizontal boundary,
that has Euclidean width `i, and that is homotopic in Σ to γi. If Σ has marked points, then
each Ai has at least one marked point on each boundary component, and the union of all of
the Ai is Σ. (If Σ has no marked points, then k = 1 and A1 should be taken to be all of

T 2.) Each f−1(Ai) is a collection of
√
d annuli, each with width `i/

√
d (the above matrix for

f stretches in the vertical direction by
√
d). Since f is a covering map, the union over i of

the f−1(Ai) is all of Σ, from which it follows that Γ is a strong reduction system and so f is
strongly reducible, as desired.

Suppose now that Σ = ((S2, P0), P ). Since f is exceptional and σf preserves a horizontal
slice of Teich(Σ), it follows from Proposition 6.2(2) that f is affine. Thus, f lifts to an affine

map f̃ of T 2. What is more, f̃ can be regarded as an affine map of Σ̃ = (T 2, P̃ ), where P̃ is
the preimage of P under the hyperelliptic involution. As above we obtain a strong reduction
system Γ̃ in Σ̃, which we may assume is horizontal. By construction, Γ̃ is invariant under the
hyperelliptic involution. Hence it gives rise to a labeled multicurve Γ in Σ. Let HM(Σ) denote

the set of labeled horizontal multicurves on Σ and let SHM(Σ̃) denote the set of symmetric

labeled horizontal multicurves on Σ̃ (we concentrate on horizontal curves to avoid curves in Σ
with connected preimage). There is a commutative diagram

SHM(Σ̃) SHM(Σ̃)

HM(Σ) HM(Σ)

f̃∗

∼= ∼=
f∗

(where the horizontal maps are the natural pullback maps). The symmetric, horizontal strong

reduction system for f̃ thus gives a (horizontal) strong reduction system for f , as desired.
For exceptional maps, the only exclusivity statement is that types 1 and 3 are exclusive.

This follows by the same reasoning as in the non-exceptional case. (In Appendix A we explain
why the argument for exclusivity of types 1 and 2 only applies in the non-exceptional cases.)
The uniqueness statement for type 3 (pseudo-Anosov) maps follows from the same argument
as in the non-exceptional case. �

We end by pointing out one consequence of the proof that is heretofore unmentioned: an
exceptional dynamical branched cover of Σ = (S, P ) is affine if and only if it has no strong
reduction system that is inessential in S.

Appendix A. Strong reduction systems and Thurston obstructions

Our main goal in this appendix is to give a geometric characterization of the orbifold for a
dynamical branched cover. With this characterization, we accomplish two goals:

(1) we give a direct proof that strong reduction systems are obstructions to holomorphicity
for dynamical branched covers with hyperbolic orbifold,
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(2) we show that a dynamical branched cover of the sphere is exceptional if and only if its
orbifold is the (2, 2, 2, 2)-orbifold, and

The first item explains why strong reduction systems are the “obvious” obstructions to holo-
morphicity for a non-exceptional dynamical branched cover. The second justifies our character-
ization of exceptional maps in the introduction. All of the material in this section was surely
known to Thurston, although the authors are unable to find the arguments in the existing
literature. The argument in Theorem 4.1 of Douady–Hubbard is very similar to our argument
for the first item. Their proof concludes by considering the derivative of the pullback map on
Teichmüller space, which in turn relies on their analogue of our Proposition 2.1. Our argument
ends by simply considering the lifted map of the hyperbolic plane.

Orbifolds for dynamical branched covers. For our purposes, a (2-dimensional) orbifold is a
marked surface (S, P ) endowed with a labeling of P by N ∪ {∞}, that is, a function νP : P →
N∪{∞}. If νP (p) > 1 then we refer to p as a cone point. We will explain below the geometric
meaning of an orbifold, which will allow us to use geometry to study dynamical branched
covers.

A map f : (S, P )→ (T,Q) is an orbifold cover if it induces a branched covering map S → T
and whenever we have p ∈ P , q ∈ Q, and f(p) = q, then

(deg fp) · νp = νq.

Here, deg fp is the local degree of f at p.
For two orbifolds (S, P ) and (S′, P ′) we write (S′, P ′) v (S, P ) if

• S′ ⊆ S,
• P ′ ⊆ P , and
• for each p ∈ P ′ we have νP (p) | νP ′(p).

A partial orbifold cover from (S, P ) to (T,Q) is an orbifold cover

(S′, P ′)→ (T,Q)

with (S′, P ′) v (S, P ). And a partial self-orbifold cover of an orbifold (S, P ) is a partial orbifold
cover from (S, P ) to itself. To our knowledge this definition has not appeared in the literature,
although we strongly suspect it was known to Thurston.

A partial self cover of surfaces is a covering map S′ → S where S′ ⊆ S (we sometimes require
S′ to be open in S). We can think of this as a special case of a partial self-orbifold cover, since
a deleted point can be regarded as an orbifold point with label ∞.

For a given dynamical branched cover f : (S, P ) → (S, P ), a basic problem is to un-
derstand all orbifold structures on (S, P ) so that f induces a partial self-orbifold cover of
(S, P ). Specifically, this means that there is some (S′, P ′) v (S, P ) so that the induced map
f : (S′, P ′)→ (S, P ) is an orbifold cover. Once we explain the geometric meaning of orbifolds
below, we will be able to use the geometry of the orbifold to study f .

Given f : (S, P )→ (S, P ), there is a minimal labeling of P so that f is a partial self-orbifold
covering map. The label at p ∈ P is determined as follows. For each k and each critical point
c with fk(c) = p, we compute the local degree of fk at c. The label νp is the least common
multiple of these local degrees over all such choices of k and c. For each q ∈ f−1(P ) \ P , the
label νq is defined to be νp, where p = f(q).

So, for example, if c ∈ P is critical and fk(c) = c for some k (that is, the portrait for f has
a loop based at c) then νc =∞.
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It is a fact that every orbifold structure on (S, P ) for which f is a partial self-orbifold
covering map is a multiple of the one constructed above. As such, this orbifold structure is
often referred to as the orbifold for f .

Euler characteristic and hyperbolic orbifolds. The Euler characteristic of an orbifold (S, P ) is
given by the Riemann–Hurwitz formula

χ(S, P ) = χ(S) +
∑
P

(
1

νp
− 1

)
(here χ(S) is the usual Euler characteristic for surfaces). We can think of an orbifold topo-
logically as the surface obtained from S by deleting a disk around each p ∈ P and gluing in
a fraction of a disk, namely, one νpth of a disk; hence the formula. We say that (S, P ) is
hyperbolic, Euclidean, or spherical if χ(S, P ) is negative, zero, or positive, respectively.

Under an orbifold covering map f : Σ → T of degree d we have the usual multiplicative
property

χ(Σ) = d · χ(T ).

It follows that in an orbifold covering, both orbifolds are of the same type: hyperbolic, Eu-
clidean, or spherical.

Geometric orbifolds. There is an entirely geometric approach to orbifolds. Let X be R2, H2,
or S2, and let G be a discrete group of isometries of X (unlike a covering space action, the
action of G might not be free). The quotient Σ = X/G is naturally described as an orbifold:
the label of a point in Σ is the cardinality of the stabilizer in G of any preimage in X. We
think of a point labeled ν as a cone point of order ν. We refer to any orbifold constructed in
this way as a geometric orbifold. The space X is the orbifold universal cover of Σ and G its
orbifold fundamental group.

Thurston determined exactly which orbifolds are geometric [18, Theorem 13.3.6]. In particu-
lar, he proved that all hyperbolic and Euclidean orbifolds are geometric: they arise as quotients
of H2 and R2 by discrete groups of isometries as above. He also proved that all orbifolds with
three or more cone points are geometric. It follows from the Gauss–Bonnet theorem that the
space X ∈ {R2,H2, S2} is determined uniquely by the orbifold X/G.

Lifting to the universal cover. Now that we have given geometric meaning to the notion of an
orbifold, we can do the same for the notion of an orbifold covering map. Specifically, it is a
fact that any orbifold covering map lifts to a map of their orbifold universal covers. In other
words, if f : Σ → T is a partial orbifold covering map and πΣ : X → Σ and πT : X → T are
the universal covering maps, then there is a map f̃ so that the following diagram commutes

X X

Σ T

f̃

πΣ πT

f

Indeed, the definition of a partial orbifold covering map implies that f induces a well-defined
homomorphism of orbifold fundamental groups. As such, the natural analogue of the usual
lifting criterion from algebraic topology applies, implying the existence of f̃ . If f is holomorphic
then, since πΣ and πT are holomorphic by definition, the induced map f̃ is holomorphic.
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Compatible measured foliations. Let Σ = (S, P ) be a marked surface endowed with a complex
structure, and let (F+,F−) be a pair of transverse measured foliations on Σ (as usual, any 1-
pronged singularities of the singularities must lie at points of P ). Let Q be the set of singular
points of the pair of foliations. The pair (F+,F−) induces a pair of transverse, nonsingular
foliations on Σ \ Q. Further, these foliations induce a complex structure on Σ \ Q, hence on
Σ (by the removable singularity theorem). The charts for this complex structure map open
sets in Σ \ Q to C in such a way that (F+,F−) map to the measured foliations on C given
by horizontal and vertical lines, the measures for the latter being |dy| and |dx|, respectively.
We say that the pair (F+,F−) is compatible with the complex structure on Σ if the complex
structures agree.

The reader familiar with quadratic differentials will recognize that a compatible pair of
foliations on Σ is the same as an integrable meromorphic quadratic differential on Σ with all
(simple) poles at points of P . Since every marked surface with a complex structure admits a
nontrivial quadratic differential (on Sg there is a (6g − 6)-dimensional vector space of these),
every complex structure has a compatible pair of measured foliations.

A pair of measured foliations on Σ gives more information than a complex structure: it gives
a Euclidean structure on Σ \ Q, and a singular Euclidean structure on Σ. In particular, we
have an area form as well as a total area.

The Jenkins extremal problem. Let Σ = (S, P ) be a marked surface endowed with a complex
structure, and let Γ = {γ1, . . . , γk} be a labeled multicurve in Σ. We denote the weight on γi
by w(γi).

A multi-annulus in Σ is a disjoint union of domains, each biholomorphic to an open annulus
in C, and each disjoint from P . We consider the following extremal problem: given the labeled
multicurve Γ as above, find a multi-annulus A = {A1, . . . , Ak} with the following properties:

(1) each Ai is homotopic to γi,
(2) (µ(A1), . . . , µ(Ak)) is a multiple of (w(γ1), . . . , w(γk)), and
(3) (µ(A1), . . . , µ(Ak)) is maximal with respect to the first two properties.

Jenkins proved that when S is not the torus, this extremal problem has a unique solution
[12, Theorem 1]. This solution corresponds to a pair of measured foliations (F+,F−) that is
compatible with the complex structure. The singular leaves of F+ form a finite graph in S
(with singular points as vertices) whose complement is a disjoint union of open annuli, each
foliated by smooth closed leaves of F−. The modulus of each annulus with respect to the
complex structure is the modulus of the corresponding Euclidean annulus (the modulus of a
Euclidean annulus with circumference C and heights H is 2πH/C). By the uniqueness of the
extremal problem, it follows that the pair (F+,F−) is unique up to scale.

Strong reduction systems as Thurston obstructions. Let f : Σ → Σ be a dynamical branched
cover. Suppose that

• f is holomorphic and
• f has a strong reduction system Γ.

We will show that either deg f = 1 or f has Euclidean orbifold. This means that for f with
hyperbolic orbifold and degree greater than 1, strong reduction systems are obstructions to
holomorphicity (and vice versa).

Fix a complex structure on Σ with respect to which f is holomorphic (we may have to replace
f with a homotopic map). Let (A1, . . . , Ak) be the multi-annulus that gives the solution to
the Jenkins extremal problem associated to Γ, and let (F+,F−) be a corresponding pair of
measured foliations. By the definition of a strong reduction system, the preimage is an equal
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or larger solution to the extremal problem. Indeed, the preimage of the collection (A1, . . . , Ak)
is, after consolidating parallel annuli, a multi-annulus where the moduli are given by the weights
on f∗(Γ) (this uses three basic facts: (1) an m-fold cover of annuli multiplies modulus by m,
(2) the modulus of a union of the closures of two adjacent annuli is the sum of the moduli,
and (3) modulus is monotone under inclusion).

By the previous paragraph, and the fact the compatible foliations for a solution to the
Jenkins problem is unique up to scale, it must be that (f∗F+, f∗F−) is a positive multiple of
(F+,F−). Moreover, since a cover of degree d reduces Euclidean area by a factor of d, we have

(f∗F+, f∗F−) =
√
d · (F+,F−)

Therefore, if we lift the map f to the universal cover, we obtain a biholomorphic homothety
where the scaling factor is

√
d. Biholomorphic maps of the hyperbolic plane are isometries,

and so it must be that d = 1 or that the orbifold for f is Euclidean, as desired.

Orbifolds and exceptional maps. We have one more loose end to tie up with respect to orbifolds
and Thurston’s characterization of rational maps. As promised in the introduction, we explain
here why an (unmarked) dynamical branched cover of the sphere has orbifold the (2, 2, 2, 2)-
orbifold if and only if is a hyperelliptic quotient of a torus map. This statement is originally
due to Cannon–Floyd–Parry–Pilgrim [5, Theorem 1.4].

We explained one direction in the introduction: hyperelliptic quotients of torus maps have
the (2, 2, 2, 2)-orbifold as their orbifold. Now suppose that f : (S2, P )→ (S2, P ) is a dynamical
branched cover with (2, 2, 2, 2)-orbifold. We would like to show that f lifts—through the
hyperelliptic involution—to a map of the torus. In other words, we would like to show that
there is a map f̃ as in the following diagram:

T 2 T 2

(S2, P ) (S2, P )

f̃

p p

f

where p is the quotient map T 2 → T 2/〈ι〉 = (S2, P ). The orbifold fundamental group of
(S2, P ) has the presentation

πorb1 (S2, P ) ∼= 〈a1, a2, a3, a4 | a2
1 = a2

2 = a2
3 = a2

4 = abcd = 1〉

and the image of the induced map

p∗ : π1(T 2)→ πorb1 (S2, P )

is the even subgroup of πorb1 (S2, P ), that is, the kernel of the map

πorb1 (S2, P )→ Z/2
ai 7→ 1.

Since all four points of P carry the label 2, it follows that the local degree of f at each point
of P is 1. Thus, the induced map f∗ maps the even subgroup of πorb1 (S2, P ) to itself. Finally,

by the lifting criterion for orbifold covering maps implies the existence of f̃ , as desired.
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Appendix B. Topological polynomials, Levy cycles, and Levy–Berstein

In this appendix we prove a strong form of the theorem which says that if a topological
polynomial is not rational then it has a degenerate Levy cycle. Again, this theorem is due
to the work of Berstein, Hubbard, Levy, Rees, Tan, and Shishikura. Our strengthening is
Proposition B.1 below. In the statement, we say that a strong reduction system is minimal if
all multicurves with fewer components fail to underlie a strong reduction system. If a dynamical
branched cover has a strong reduction system, then it has a minimal one.

Proposition B.1. Let f : (R2, P )→ (R2, P ) be a topological polynomial. Every minimal strong
reduction system for f is a degenerate Levy cycle. In particular, if f has a strong reduction
system then it has a degenerate Levy cycle.

As in the introduction, the Levy–Berstein theorem says that if f is a topological polynomial
and each point of P has a critical point in its forward f -orbit then f is rational. This is
immediate from Proposition B.1, since the union of the disks for a degenerate Levy cycle
contains no critical points.

Our argument for Proposition B.1 is a modification of the argument in Hubbard’s book for
an analogous statement about Thurston obstructions [11, Theorem 10.3.7]. We use two tools,
innermost curves and lifting graphs.

Innermost curves. The main feature that makes topological polynomials different from topo-
logical rational maps—and what allows us to prove Proposition B.1—is that every curve in
(R2, P ) has a well-defined interior: the compact region of R2 bounded by the curve. Moreover,
if δ is a component of f−1(γ) then f maps the interior of δ onto the interior of γ. Given a
multicurve Γ we will denote by Γ◦ the multicurve given by its innermost components.

Lifting graphs. If Γ is an f -stable, labeled multicurve for a dynamical rational map f , we define
a corresponding a directed graph, the lifting graph, as follows: the vertices are the components
of Γ and there is a directed edge from γ to δ if δ is homotopic to a component of f−1(γ) (note
that f−1(γ) may have components that are inessential or are essential and not homotopic to a
component of Γ). We label each vertex by the corresponding labels on the curves of Γ and we
label each edge by a natural number, the degree of f |δ : δ → γ.

We can interpret the action of f∗ on Γ in terms of the lifting graph. Under f∗, the labels on
the vertices change as follows: the new label on a vertex v is the sum of wi/di where wi is the
weight on the ith vertex with a directed edge pointing to v and di is the label on that edge.

Proof of Proposition B.1. Let Γ be a labeled multicurve in (R2, P ) giving a minimal strong
reduction system for f . Let G be the corresponding lifting graph.

We first claim that each vertex of G has at least one incoming edge, that is, G has no initial
vertices. This follows from the stability of Γ, since an initial vertex would be a component of
Γ not parallel to a component of f−1(Γ).

We next claim that each vertex of G has at least one outgoing edge, that is, G has no
terminal vertices. Indeed, suppose that a vertex γ is terminal. It cannot be that γ is the only
vertex of G, for then G would have no edges, and it would be impossible for Γ = γ to underly a
strong reduction system. Now, if we delete γ from Γ, then the multicurve that remains—which
is nonempty by the previous sentence—still underlies a strong reduction system for f , violating
the minimality of Γ.

We now claim that the set of vertices of G corresponding to innermost curves of Γ determines
a closed subgraph G◦ of G, that is, a directed edge starting at an innermost curve ends at an
innermost curve. Suppose there is a directed edge from some curve γ to a curve δ that is not
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innermost. We will show that γ is not innermost. Let ε be a curve of Γ in the interior of δ
(and not parallel to δ). Since G has no initial vertices, ε lies in the f -preimage of a curve φ
of Γ. And because f maps interiors to interiors, this φ would have to lie in the interior of γ.
Also, since the components of Γ are not parallel pairwise and since f is a function, φ is not
parallel to γ, and the claim is proved.

We next claim that G◦ is equal to G. Suppose not. Then the subgraph G′ of G spanned
by the vertices not in G◦ is nonempty. We will show that G′ represents a strong reduction
system for f , which will violate the minimality of Γ. We first show that G′ represents a stable
multicurve, and then check the condition on labels. Since G has no terminal vertices, each
vertex of G′ is the end point of an edge of G. As G◦ is closed, it must be that the edges
terminating in G′ have origins in G′. This is to say that G′ represents a stable multicurve for
f . The action of f∗ on the labels of G′ agrees with the restriction of its action on the labels of
G, and so G′ does indeed represent a strong reduction system for f , the desired contradiction.

We now claim that no two directed edges of G have the same endpoint. Indeed, by the
previous claim all vertices of G are innermost curves of Γ. Any two innermost curves are
un-nested, that is, neither lies in the interior of the other. It follows that the components of
their preimages un-nested. In particular, the preimages cannot be parallel, whence the claim.

At this point, we have shown that G has no initial or terminal vertices and that no two
edges has the same endpoints. It follows that G is a union of directed cycles. By minimality,
G is a single directed cycle.

If G has an edge label greater than 1, then there are no positive labels of the vertices of G
that satisfy the condition for a strong reduction system. Therefore all of the edges are labeled
1. This is to say that G represents a Levy cycle. Since each curve of Γ maps to the next with
degree 1, the disks interior to these curves also map to the next with degree 1, meaning that
Γ is a degenerate Levy cycle, as desired. �

Appendix C. Further extensions of the Übertheorem

In this third and final appendix, we explain several generalizations of the Nielsen–Thurston
Übertheorem. There are three versions: for equivariant maps, for non-orientable surfaces, and
for orientation-reversing maps. All of these are straightforward extensions of the Übertheorem.
In theory, we could combine all of the extensions into one Superübertheorem, but for clarity
we prefer to state them separately. We also state the extensions informally, because some of
the details are left to the reader.

Equivariant maps. Let Σ = (S, P ), let f : Σ→ Σ be a dynamical branched cover. Let G be a
finite group that acts on Σ. As usual, we say that f is G-equivariant is f(g · x) = g · f(x) for
all x ∈ S. For example, we say that f is an odd map of (S2, P ) if it is Z/2-equivariant, where
Z/2 acts by the antipodal map.

If we assume that the map f in the statement of the Übertheorem is G-equivariant, then the
Übertheorem (of course) still holds, but with the added conclusion that the resulting homotopic
map φ is also G-equivariant. We have the following consequences:

(1) if φ is holomorphic then G preserves the complex structure,
(2) if φ is strongly reducible, then G preserves the strong reduction system, and
(3) if φ is pseudo-Anosov, then G preserves the measured foliations.

The key observation required to prove this enhancement of the Übertheorem is that the pull-
back of any geometric object (complex structure, strong reduction system, measured foliation,
etc.) under a G-equivariant map is G-invariant. So, for example, the image of the pullback
map σf is contained in the subspace of Teich(Σ) fixed by the action of G.
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Non-orientable surfaces. For a non-orientable, closed surface S, we can define a marked surface
Σ = (S, P ) and a dynamical branched cover f : Σ → Σ as in the orientable case. Such maps
arise naturally even when studying dynamical branched covers of orientable surfaces. For
instance, any odd map of Σ = (S2, P ) descends to a dynamical branched cover of (RP2, P̄ )
where P̄ is the image of P under the quotient of S2 by the antipodal map.

The natural analogue of a complex structure in this setting is a conformal structure, by which
we mean a map that preserves angles, up to sign, in the tangent space. This is equivalent to
the existence of an atlas where the charts map to the complex plane and transition maps are
holomorphic or anti-holomorphic. For orientable surfaces, complex structures and conformal
structures are the same thing.

Given f : Σ → Σ for non-orientable Σ, we obtain a dynamical branched cover f̃ : Σ̃ → Σ̃
of the orientation double cover Σ̃. The deck group for this (characteristic) cover is G ∼= Z/2
and the map f̃ is G-equivariant. As above the map f̃ is (up to homotopy) either holomorphic,
strongly reducible, or pseudo-Anosov. And moreover these corresponding geometric structures
are G-invariant. These means that f is either conformal, strongly reducible, or pseudo-Anosov,
giving our second extension of the Übertheorem.

There is an important subtlety in the above argument. When we modify f̃ by isotopy, we
need to know that we can modify f accordingly. In other words, we need to know that the
isotopy of f̃ can be pushed down to an isotopy of f .

In the theory of mapping class groups, it is true that homotopic G-equivariant homeomor-
phisms are G-equivariantly homotopic; this fact is known as the Birman–Hilden theorem (see
the expository paper by the second- and third-named authors [13]). The analogue of the
Birman–Hilden theorem does indeed hold for G-equivariant maps of degree greater than 1
(which is what we need here). In fact, the Maclachlan–Harvey proof of the Birman–Hilden
theorem, which is based on Teichmüller theory, applies almost directly to this more general
case (see page 13 of the aformentioned survey for a discussion). The only change needed is to
replace all of the groups in the proof with monoids, since maps of degree greater than 1 do not
have inverses.

Orientation-reversing maps. Let Σ = (S, P ) be a marked surface, and suppose that Σ is
oriented. We say that an orientation-reversing map f : Σ→ Σ is a dynamical branched cover
if f restricts to an (unbranched) covering space over S \ P . One way to construct such an f
is to take an (orientation-preserving) dynamical branched cover (S2, P )→ (S2, P ) where P is
preserved by the antipodal map and post-compose with the antipodal map.

Let f : Σ → Σ is an orientation-reversing dynamical branched cover. We claim that f is
homotopic to a map that is either anti-holomorphic, strongly reducible, or pseudo-Anosov, and
moreover this follows from our proof of the Übertheorem. The only required observation is that
if an orientation-reversing map fixes a point in Teichmüller space then it is anti-holomorphic
with respect to the corresponding complex structure. For the non-exceptional cases, this
statement was already stated and proved by Geyer [10, Theorem 3.9].
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