The Curve Graph of the 5-Punctured Sphere

Sami Aurin¹ and Darrion Thornburgh²

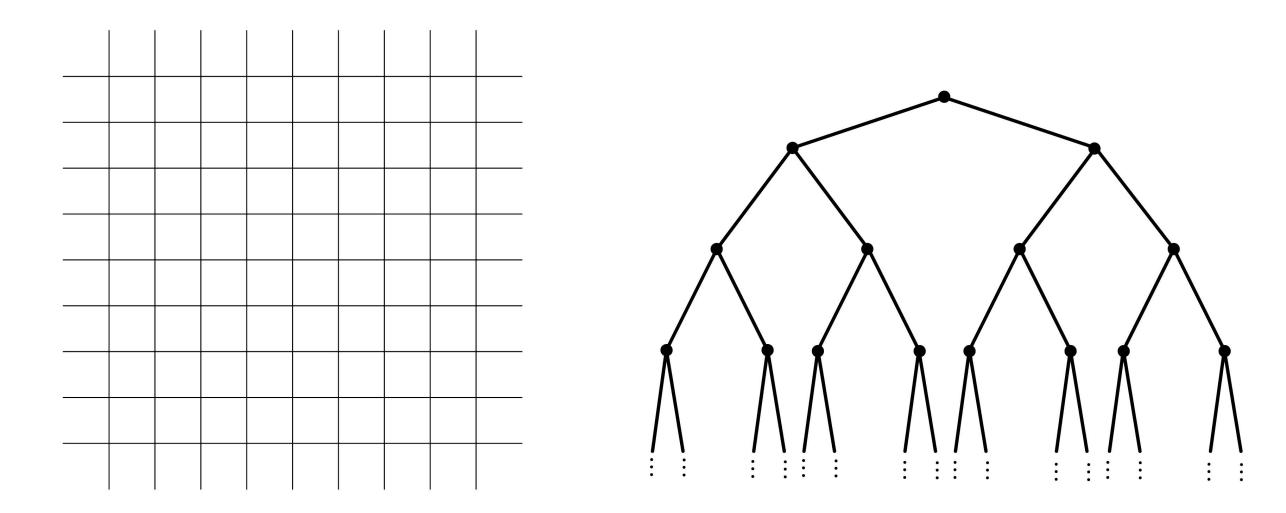
Mentors: Wade Bloomquist¹ and Dan Margalit¹

Our Project

Hensel, Przytycki, and Webb proved the curve graph of a surface is 17-hyperbolic. Our goal is to show it is **not** 1-hyperbolic for the 5-punctured sphere.

Hyperbolicity

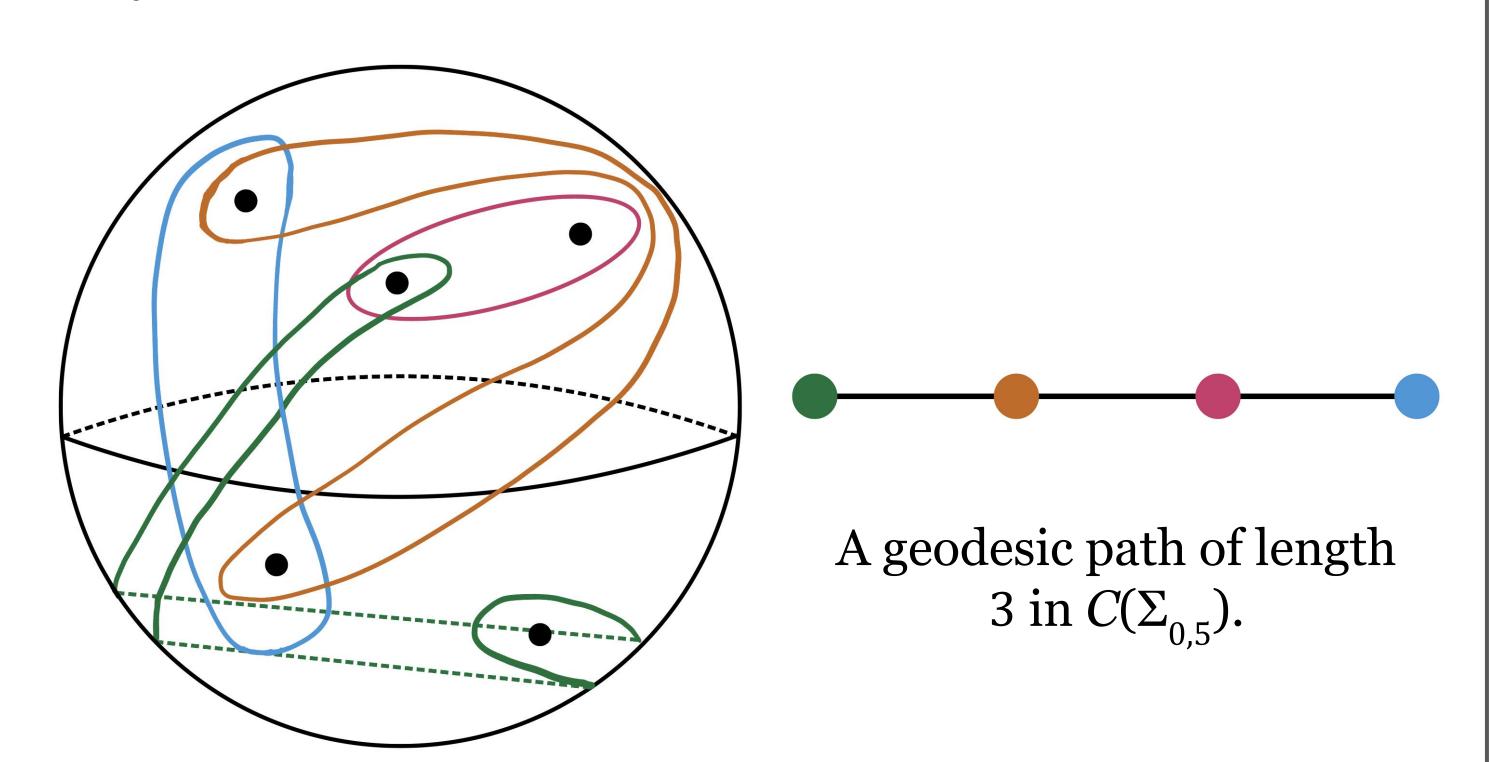
Hyperbolic space comes in many forms: trees, the hyperbolic plane, curve graphs of surfaces, etc.



Euclidean space is not hyperbolic but a tree is.

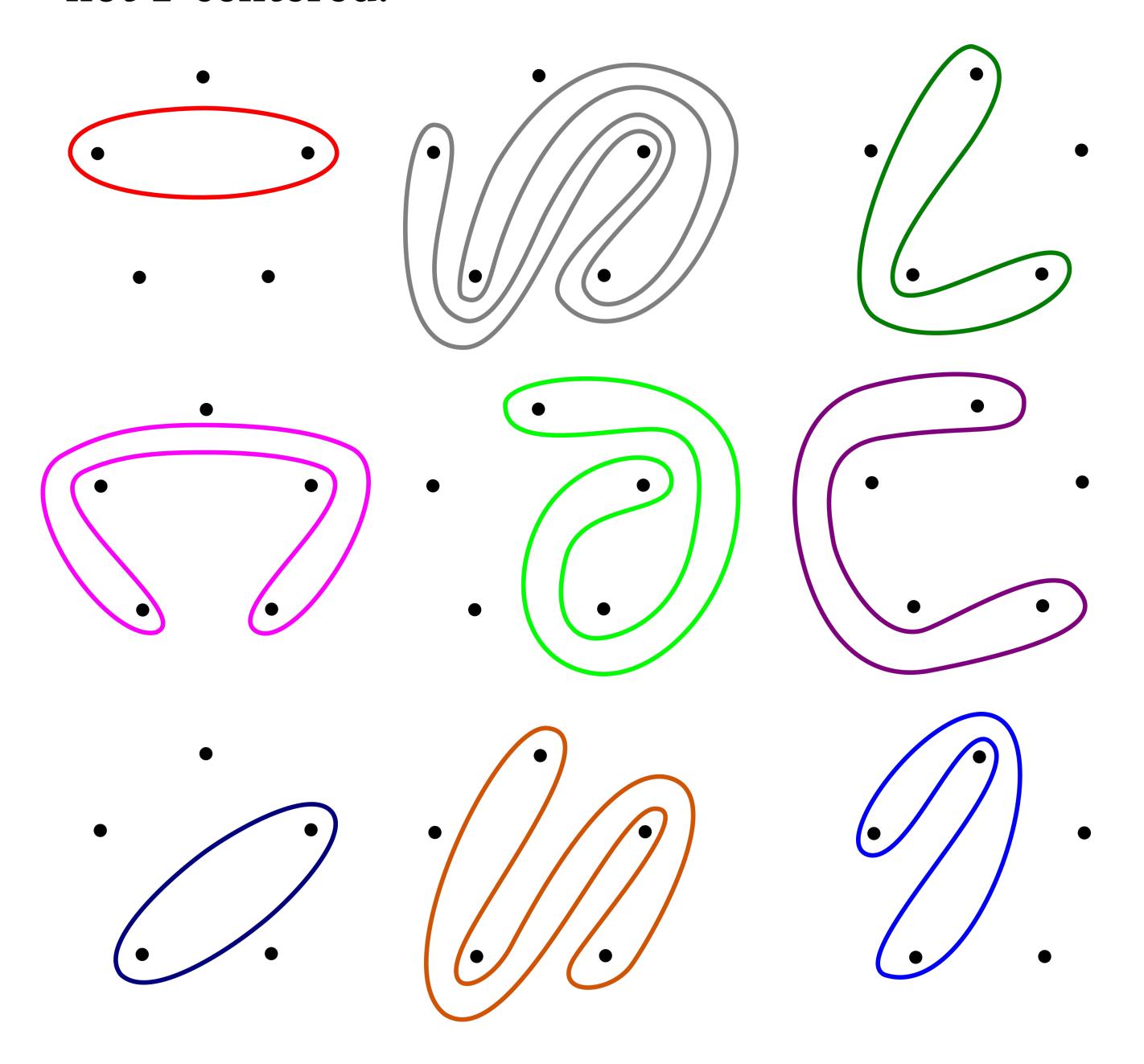
Curve Graph C(S)

The **curve graph** C(S) of a surface S is the graph where vertices are curves and the edges represent disjointedness.



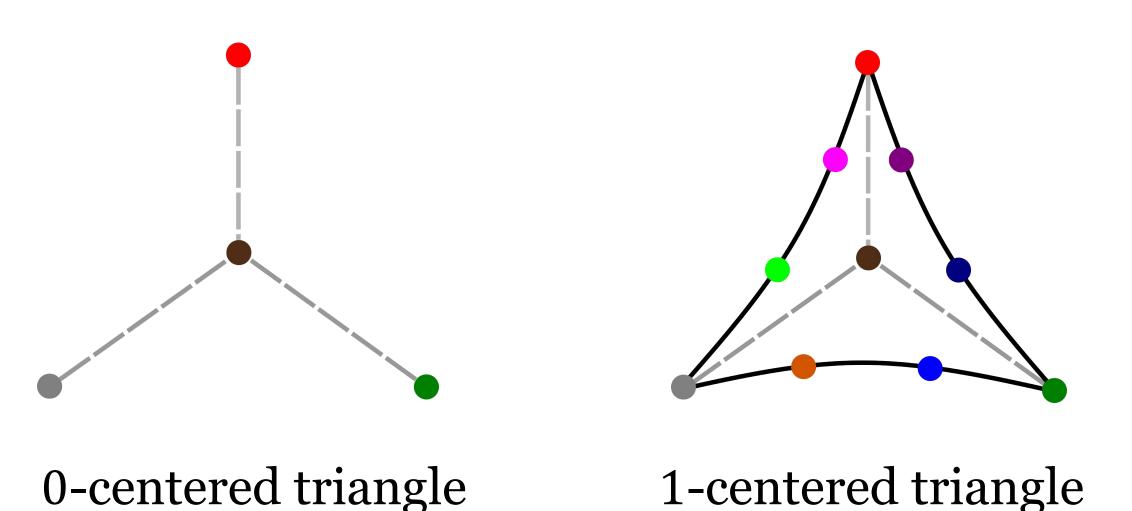
$C(\Sigma_{0.5})$ is not 1-hyperbolic

Theorem (Aurin-Thornburgh): The following curves form a geodesic triangle that is not 1-centered.



Centered Triangles

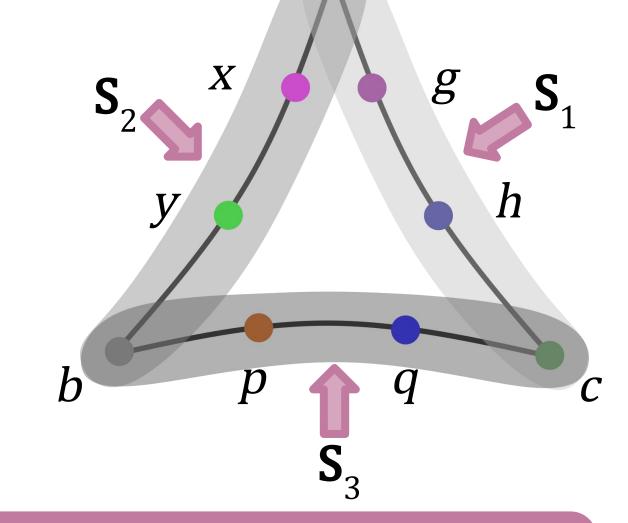
A triangle in C(S) is δ -centered if there exists a vertex that is at most δ away from each side. If all triangles are δ -centered, then C(S) is δ -hyperbolic.



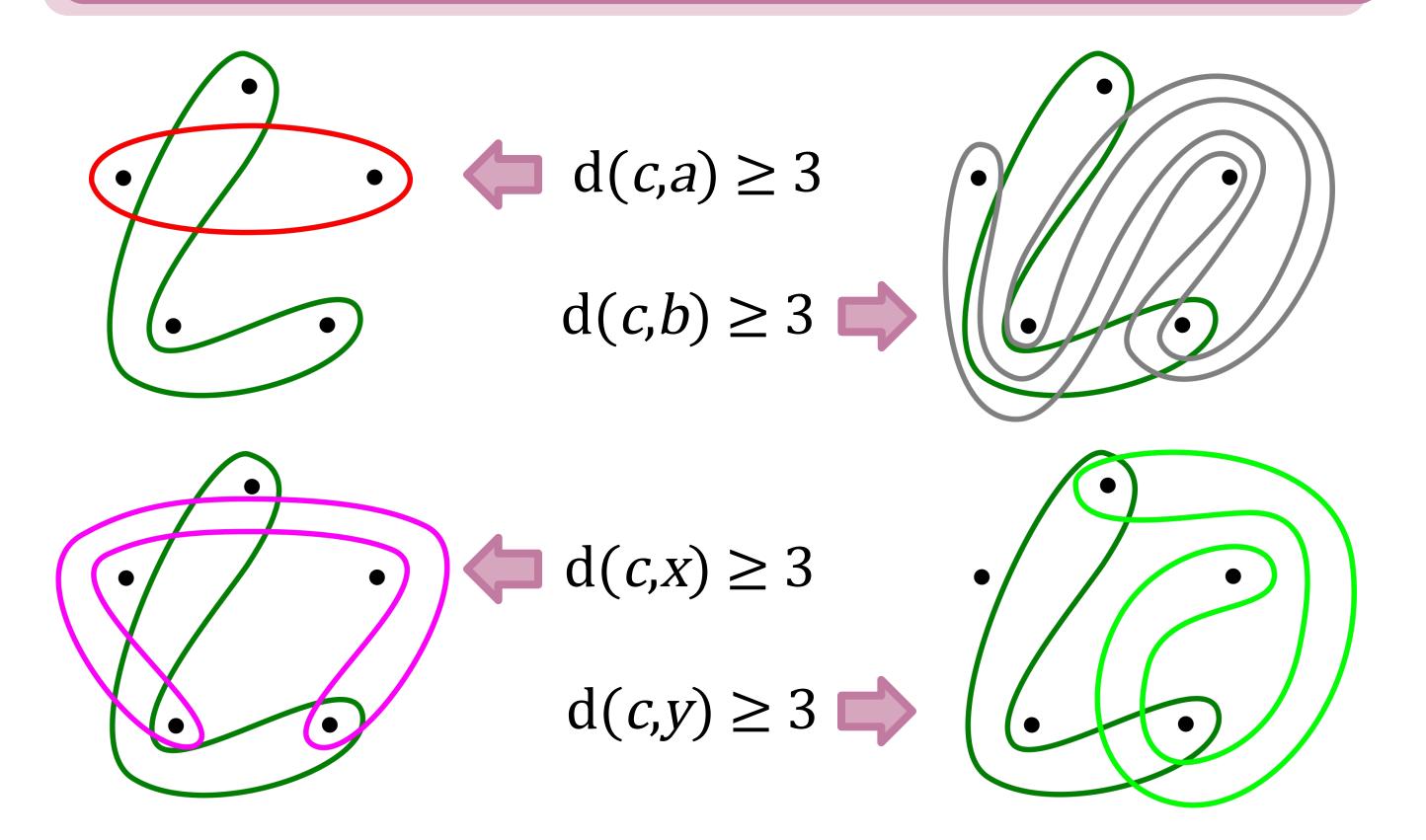
Not 1-Centered

Lemma: A geodesic triangle is not 1-centered if the following hold:

- 1.) $\min\{d(b,\alpha) : \alpha \in S_1\} \ge 3;$ 2.) $\min\{d(c,\alpha) : \alpha \in S_2\} \ge 3;$



Checking Condition 2



Future Work

Extending our result to $C(\Sigma_{0.0})$ for all $p \ge 6$ and possibly to surfaces with genus.

Acknowledgments

We would like to thank our mentors Dr. Wade Bloomquist and Dr. Dan Margalit. We would also like to thank the NSF for funding this research.

