On Congruence Subgroups of the Braid Group

Jessica Appel ${ }^{1}$, Katie Gravel ${ }^{2}$, Annie Holden ${ }^{3}$
${ }^{1}$ University of Kentucky $\quad{ }^{2}$ Massachusetts Institute of Technology $\quad{ }^{3}$ Colby College

Braids

Goal: Understand the structure of congruence subgroups of the braid group.

Integral Burau Representation

$$
\begin{aligned}
\rho_{-1}: B_{n} & \rightarrow G L(n, \mathbb{Z}) \\
\sigma_{i} & \mapsto I_{i-1} \oplus\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right] \oplus I_{n-i-1}
\end{aligned}
$$

r_{N} is the usual $\bmod N$ reduction map

$$
B_{n}[N]=\operatorname{ker}\left(r_{N} \circ \rho_{-1}\right)
$$

Problem I: Generating Sets

Question: What is a natural generating set for $B_{n}[4]$? How big is it?
Margalit and Kordek: Size lower bounded by

$$
\binom{n}{2}+3\binom{n}{3}+3\binom{n}{4} \sim \mathrm{O}\left(n^{4}\right)
$$

Schreier's method \rightsquigarrow exponential generating set Use recurrence relation to reduce generating set

Theorem.

$$
\# \text { generators of } B_{n}[4] \sim \mathrm{O}\left(n^{5}\right)
$$

Acknowledgements

We would like to thank Dr. Wade Bloomquist, Dr. Dan Margalit, Georgia Tech, and the National Science Foundation.

Problem II: $P B_{n}^{\ell}$ and $B_{n}[2 \ell]$
Question: What is the relationship between $P B_{n}^{\ell}$ and $B_{n}[2 \ell]$ for varying ℓ ?
Brendle and Margalit: $P B_{n}^{2}=B_{n}[4]$

Theorem.

For $\ell=2^{k}, P B_{n}^{\ell} \subset B_{n}[2 \ell]$
For $\ell=6,10,12$ or ℓ odd, $P B_{n}^{\ell} \not \subset B_{n}[2 \ell]$

Conjecture.

$$
\ell=2^{k} \Longleftrightarrow P B_{n}^{\ell} \subset B_{n}[2 \ell]
$$

Problem III: Quotients

Question: What can we say about quotients of Burau levels?

Artin: $B_{n} / P B_{n} \cong S_{n}$
Stylianakis: $B_{n}[p] / B_{n}[2 p] \cong S_{n}$ for p prime

Theorem.

$$
\begin{aligned}
& B_{n}[\ell] / B_{n}[2 \ell] \cong S_{n} \text { for odd } \ell \\
& B_{n}[\ell] / B_{n}[2 \ell] \cong(\mathbb{Z} / 2 \mathbb{Z})^{\binom{n}{2}} \text { for even } \ell
\end{aligned}
$$

Georgia
 Tech

School of

Mathematics

