Braids

Goal: Understand the structure of congruence subgroups of the braid group.

On Congruence Subgroups of the Braid Group

Jessica Appel¹, Katie Gravel², Annie Holden³

¹University of Kentucky ²Massachusetts Institute of Technology

Integral Burau Representation

$$\rho_{-1}: B_n \to GL(n, \mathbb{Z})$$
$$\sigma_i \mapsto I_{i-1} \oplus \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \oplus I_{n-i-1}$$

 r_N is the usual mod N reduction map $B_n[N] = ker(r_N \circ \rho_{-1})$

Problem I: Generating Sets

Question: What is a natural generating set for $\check{B}_n[4]$? How big is it?

Margalit and Kordek: Size lower bounded by $\binom{n}{2} + 3\binom{n}{3} + 3\binom{n}{4} \sim O(n^4)$

Schreier's method \rightsquigarrow exponential generating set Use recurrence relation to reduce generating set

Theorem.

generators of $B_n[4] \sim O(n^5)$

Acknowledgements

We would like to thank Dr. Wade Bloomquist, Dr. Dan Margalit, Georgia Tech, and the National Sci-ence Foundation.

³Colby College

Problem II: PB_n^{ℓ} and $B_n[2\ell]$

and $B_n[2\ell]$ for varying ℓ ? Brendle and Margalit: $PB_n^2 = B_n[4]$

Theorem.

For $\ell = 2^k$, $PB_n^\ell \subset B_n[2\ell]$

Conjecture.

 $\ell = 2^k \iff PB_n^\ell \subset B_n[2\ell]$

Problem III: Quotients

Question: What can we say about quotients of Burau levels?

Artin: $B_n/PB_n \cong S_n$

Theorem.

 $B_n[\ell]/B_n[2\ell] \cong S_n$ for odd ℓ $B_n[\ell]/B_n[2\ell] \cong (\mathbb{Z}/2\mathbb{Z})^{\binom{n}{2}}$ for even ℓ

- Question: What is the relationship between PB_n^{ℓ}
- For $\ell = 6, 10, 12$ or ℓ odd, $PB_n^{\ell} \not\subset B_n[2\ell]$

- Stylianakis: $B_n[p]/B_n[2p] \cong S_n$ for p prime

