Background

Rabbit polynomial:

$$
\begin{gathered}
R(z)=z^{2}+c \\
c \approx-0.1226+0.7449 i
\end{gathered}
$$

Periodicity:

Dehn Twist

For any curve $d, T_{d} \circ R$ is equivalent to one of the rabbit, corabbit, airplane.

$$
f:\{\text { curves }\} \rightarrow\{R, C, A\}
$$

Example:

$$
f(\because \cdot)=C
$$

Goal

Given a curve d, we want to determine $f(d)$.

vertices $=$ curves
edges $=$ minimal intersection of two

Infinitely Many Rabbits!

For any liftable curve d that intersects the dashed ray $2 \bmod 4$ times, the lift of d is trivial, hence $f(d)=R$.

Example:

This is $1 / 6$ of all curves.
Other Infinite Families

$f(1 / 1-2 k)=f\left(T_{a}^{k}(b)\right)$

- k is odd: $f(1 / 1-2 k)=R$
- $\mathrm{k}=2 \mathrm{~m}: f(1 / 1-2 k) \simeq T_{a}^{1-m} \circ R$
- Bartholdi-Nekrashevych algorithm determines $T_{a}^{1-m} \circ R$ as R, C, or A

$f(1 / 5)=A$

Acknowledgments

Special thanks to mentors Sarah Davis, Becca Winarski, and Dan Margalit as well as Georgia Tech and the NSF.

Georgialnstitute
ofTech

