Finite Subgraphs of the Curve Graph

Jack Moffatt¹, Simon Rosenblum², and Darrion Thornburgh³ Mentors: Dan Margalit³ and Abdoul Karim Sane⁴

Our Project

The curve graph of a surface is an infinite graph with a rich structure. We aim to study the curve graph of 5-punctured sphere by characterizing its finite subgraphs.

Curve Graph C(S)

The **curve graph** *C*(*S*) of a surface *S* is the graph where vertices are curves and the edges represent disjointedness.

A graph is **realizable** on a surface if there exists a collection of curves on the surface which are disjoint if and only if the two curves share an edge.

Results

We found **no simple characterization** in terms of a finite list of primitive unrealizable graphs. We were able to characterize some restrictions with a graph homomorphism.

Hereditary Property

A hereditary graph property is a property which is inherited by all induced subgraphs.

A triangle-free graph G.

G - $\{v\}$ is also triangle-free.

In the curve graph,- taking induced subgraphs corresponds to deleting curves.

Primitive Graphs

A **primitive unrealizable graph** is an unrealizable for which every induced subgraph can be realized.

The triangle is a primitive unrealizable pattern.

The square is a primitive unrealizable pattern.

The most critical primitive unrealizable graphs we found were the 4-cycle and the Petersen graph.

Curve Graph Homorphism

Using homology, we obtain a graph homomorphism $f: C(\Sigma_{0,5}) \rightarrow P$. This can be generalized.

Image from Wikipedia.

Conjecture: There are finite number of primitive unrealizable graphs that have a homomorphism to P.

Future Work

Using forbidden patterns and homomorphisms to compute bounds on the chromatic number of the curve graph for surfaces with genus.

Acknowledgments

We thank our mentors Abdoul Karim Sane and Dan Margalit. We would also like to thank the NSF and Vanderbilt University for funding this research.

