Geometric Homomorphisms from Surface Groups to Free Groups

Stephanie Huang¹, Qianqian Wu² Mentors: Dan Margalit³, Abdoul Karim Sane⁴

Our Project

This projects aims to determine which homomorphisms $\pi_1(\Sigma_g) \to \mathbb{F}_n$ are geometric.

Geometric Homomorphisms

Crisp-Wiest Construction:

 $\pi_1(\Sigma_2) \to \mathbb{F}_3 = \langle x, y, z \rangle$

Subgroups of \mathbb{F}_n from Graphs

The fundamental group of a labeled trivalent graph on *n* vertices is a subgroup of \mathbb{F}_n .

 $\pi_1(\Gamma) = \langle x, y^{-1}zy \rangle$

 $\pi_1(\Gamma) = \langle yx, yz \rangle$

Theorem

A homomorphism, $\pi_1(\Sigma_g) \to \mathbb{F}_{3g-3}$, is *geometric* iff $\operatorname{im}(\varphi)$ corresponds to the fundamental group of a labeled trivalent graph, Γ , on 2g - 2 vertices.

Two types of image on a genus 2 surface:

Construct Geometric Homomorphisms

For example, $\varphi : \pi_1(\Sigma_2) \to \mathbb{F}_3$

The preimage of *y* includes 4 points on the boundary.

Idea: Use the one-to-one correspondence between

1: Harvey Mudd College 2: Grinnell College 3: Vanderbilt University 4: Georgia Institute of Technology

Find the preimage of intersection to retrace the curve.

Acknowledgement

would like to thank our mentors Abdoul Karim he and Dan Margalit for their guidance.