Classifying Maps from the Braid and Symmetric Groups

Alice Chudnovsky, Lily Li, Caleb Partin

 Dr. Kevin Kordek, Professor Dan MargalitTotally Symmetric Sets
Goal: When are there NO interesting maps from the Braid and Symmetric groups to another group?

A Totally Symmetric Set is a subset of some group such that: - All elements commute

- Any permutation of the subset can be achieved through conjugation by a group element.

TSS Condition: Under a group homomorphism the image of a totally symmetric set of G must be a totally symmetric set of the same size in H or a singleton.

Examples

Symmetric Group:

Conjugating Element: (135)(246)

Braid Group:

Main Results

Arrows $(A \rightarrow B)$ signify that all homomorphisms from group A to group B are cyclic

Mapping Property

Proposition: If two elements of the totally symmetric set

$$
\left\{\sigma_{1}, \sigma_{3}, \ldots\right\} \subset B_{n}
$$

are sent to the same element, then the map is cyclic.

Proof. $\left\langle\left\langle\sigma_{1} \sigma_{3}^{-1}\right\rangle\right\rangle \cong B_{n}^{\prime}$

Sizes of Totally Symmetric Sets
Let $S(G)$ be the size of the largest totally symmetric set in G :

G	$S(G)$
F_{n}	1
$D_{2 n}$	2
$\mathbb{Z} / n p \rtimes \mathbb{Z} / p$	2
$B S(1, n)$	1 or 2
$S L_{2}(\mathbb{C})$	2

Size Criterion

Let S be a size n totally symmetric set in G, such that no element in S can be expressed as a product of the others. Then $|G| \geq 2^{n} n$!

