Classifying Maps from the Braid and Symmetric Groups

Alice Chudnovsky, Lily Li, Caleb Partin
Dr. Kevin Kordek, Professor Dan Margalit

Totally Symmetric Sets

Goal: When are there NO interesting maps from the Braid Let S(G) be the size of the largest totally symmetric set in G-
and Symmetric groups to another group? Arrows (A — B) signify that all homomorphisms from group A
to group B are cyclic Q S
A Totally Symmetric Set is a subset of some group such that: 6) () S(G
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TSS Condition: Under a group homomorphism the image
of a totally symmetric set of G must be a totally symmetric G+ S (G)
set of the same size in H or a singleton.
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Conjugating Element: (135)(246)

Mapping Property

Braid Group:

Proposition: If two elements of the totally symmetric set
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are sent to the same element, then the map is cyclic.

Let S be a size n totally symmetric set in G, such that no

o4 o3 O element in S can be expressed as a product of the others.

Then |G| > 2"n!

Proof. {{oi07")) = B!
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