

Totally Symmetric Sets

Goal: When are there NO interesting maps from the Braid and Symmetric groups to another group?

- A Totally Symmetric Set is a subset of some group such that:
 - All elements commute

 Any permutation of the subset can be achieved through conjugation by a group element.

TSS Condition: Under a group homomorphism the image of a totally symmetric set of G must be a totally symmetric set of the same size in H or a singleton.

Classifying Maps from the Braid and Symmetric Groups

Alice Chudnovsky, Lily Li, Caleb Partin Dr. Kevin Kordek, Professor Dan Margalit

Proof.

Sizes of Totally Symmetric Sets

Let S(G) be the size of the largest totally symmetric set in G:

G	S(G)
F_n	1
D_{2n}	2
$\mathbb{Z}/np \rtimes \mathbb{Z}/p$	2
BS(1,n)	1 or
$SL_2(\mathbb{C})$	2

Let S be a size n totally symmetric set in G, such that no element in S can be expressed as a product of the others. Then $|G| \ge 2^n n!$

This research was supported by NSF RTG grant (DMS #1745583).

Size Criterion