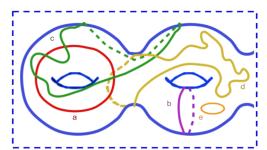

Automorphisms of the Fine Curve Graph Adele Long¹, Anna Pham², Claudia Yao³


Project Mentors: Dan Margalit and Yvon Verberne

Fine Curve Graph FC(S)

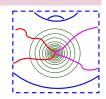
Vertices: essential simple closed curves in S Edges: Disjointness

Main Theorem

The natural map $Homeo(S) \rightarrow Aut FC(S)$ is an isomorphism.

Extended Fine Curve Graph EFC(S)

Vertices: simple closed curves (including inessential curves)



Theorem (Farb-Margalit)

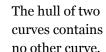
The natural map $Homeo(S) \rightarrow Aut EFC(S)$ is an isomorphism.

Subgraph of $EFC(S) \leftrightarrow Point in S$

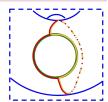
∀ a. b $(c_i) \rightarrow c \Leftrightarrow \text{intersecting}$ infinitely many c: a intersects b

Proof Approach: *EFC(S)* to *FC(S)*

We want a map: Aut $FC(S) \rightarrow Aut EFC(S) \approx Homeo(S)$


Characterizing Curves

The **hull** of a set of curves: union of the curves and all the disks they bound



Curve Pairs

Use essential curves characterizing inessential ones. More complex to characterize.

Acknowledgements

We would like to thank the NSF, the Georgia Tech School of Math, Dan Margalit, Yvon Verberne, and Benson Farb. This project was funded by NSF Grant DMS-181843.