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My research is on the group theoretical, combinatorial, and dynamical
aspects of the mapping class group, which is the group of homeomorphisms
of a topological surface, modulo isotopy. We think of the mapping class
group as the group of symmetries of a surface. One reason that the map-
ping class group is important is that it connects in a deep way to many
other areas of mathematics, including dynamics, 3- and 4-manifold theory,
algebraic geometry, group theory, representation theory, number theory,
algebraic topology, and complex analysis, to name a few.

Dehn and Nielsen studied the mapping class group from the algebraic
and geometric points of view in the early part of the 20th century. The
richness of the subject today is due in large part to the work of William
Thurston on the classification of surface homeomorphisms in the 1970s.

My work draws techniques and ideas from—and answers questions raised
by—the work of Dehn, Nielsen, Birman, McMullen, Thurston, and others,
and makes use of Morse theoretic arguments à la Bestvina–Brady, combi-
natorial methods of Ivanov, and the tools of geometric group theory, repre-
sentation theory, 3-manifold theory, and Teichmüller geometry.

My program of research has six prongs. The first concerns the finite-
ness properties of an important subgroup of the mapping class group called
the Torelli group. The second investigates representations of braid groups
induced by the mapping class group. The third direction is about the sym-
metries of the mapping class group itself, that is, the symmetries of the
symmetries of a surface. The fourth studies the dynamics of individual
elements of the mapping class group. The fifth is on relations in the map-
ping class group. Finally, the last concerns the theory of 4-manifolds, in
particular Lefschetz fibrations and surface bundles over surfaces.

1. Finiteness properties of Torelli groups

The mapping class group MCG(Sg) of a surface Sg of genus g has a
symplectic representation. The kernel I(Sg) is called the Torelli group:

1→ I(Sg)→ MCG(Sg)→ Sp(2g,Z)→ 1.

We think of the Torelli group I(Sg) as capturing the non-arithmetic (or,
more mysterious) aspects of the mapping class group MCG(Sg).

A fundamental open problem is to determine if the Torelli group is finitely
presentable when g ≥ 3; in other words, does the Torelli group have a finite
algebraic description?
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A more general, and much-studied, problem is to determine which of the
homology groups Hk(I(Sg)) are finitely generated. Bestvina, Bux, and I
determined that the cohomological dimension of I(Sg) is 3g−5 (in particu-
lar, all homology groups Hk(I(Sg)) are all trivial for k > 3g−5), answering
a 20 year old question of Mess and Farb.

Theorem 1.1. For g ≥ 2, we have cd(I(Sg)) = 3g − 5.

We further showed that H3g−5(I(Sg)) is infinitely generated, sharpening
a theorem of Akita, answering a question of Mess from Kirby’s problem list,
and solving a problem of Farb.

Theorem 1.2. For g ≥ 2, the group H3g−5(I(Sg)) is infinitely generated.

We in particular recover, and significantly extend, a celebrated theorem
of Mess which says that I(S2) is an infinitely generated free group.

We also studied the subgroup K(Sg) of I(Sg) that is generated by Dehn
twists about separating curves. Johnson showed that K(Sg) has infinite
index in I(Sg). We proved that the cohomological dimension of K(Sg) is
2g − 3, also answering a question of Farb.

Theorem 1.3. For g ≥ 2, we have cd(K(Sg)) = 2g − 3.

The main contribution is a new combinatorial model for I(Sg) called
the complex of minimizing cycles. This idea inspired subsequent papers by
Hatcher and Irmer, as well as a paper of Hatcher and myself, where we
give a simple proof of the classical theorem of Birman and Powell that the
Torelli group is generated by bounding pair maps.

Analogous to MCG(Sg) is the group Out(Fn) (the group of outer auto-
morphisms of a free group). We can think of Out(Fn) as the mapping class
group of a graph. There is a corresponding Torelli group I(Fn), first studied
by Nielsen and Magnus. Bestvina, Bux, and I showed the following.

Theorem 1.4. For n ≥ 3, we have cd(I(Sn)) = 2n− 4.

Theorem 1.5. For n ≥ 3, the group H2n−4(I(Sn)) is infinitely generated.

This answers a question of Bridson and Vogtmann, and extends/sharpens
a theorem of Smillie and Vogtmann. In the case n = 3, the last result
generalizes the famous theorem of Krstić and McCool that I(F3) is not
finitely presented. We also give a geometric proof of the seminal theorem
of Magnus that I(Fn) is finitely generated.

Despite the similarity in the statements of our theorems about I(Sg) and
I(Fn), the approaches are decidedly orthogonal. For instance, the complex
of minimizing cycles for a graph is a single point. On the other hand, the
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proof for I(Fn) makes use of combinatorial Morse theory, applied to Culler–
Vogtmann’s Outer space; and analogous Morse functions on Teichmüller
space do not yield our theorem about I(Sg).

2. The Burau representation and the Torelli group

The braid groups Bn are isomorphic to the mapping class groups of punc-
tured disks. What is more, there are injective homomorphisms Bn →
MCG(Sg). As a direct consequence, we obtain a symplectic representa-
tion of B2g+1 → Sp(2g,Z). This representation is nothing other than the
Burau representation evaluated at t = −1. The kernel (modulo its center)
is isomorphic to the hyperelliptic Torelli group SI(Sg) the centralizer in
the Torelli group of a hyperelliptic involution.

Hain conjectured that SI(Sg) is generated by Dehn twists. At first Hain’s
conjecture seemed overly optimistic: one cannot expect that an infinite
index subgroup of I(Sg) is generated by the generators of I(Sg) lying in
that subgroup. Worse, there are other simple elements of SI(Sg), and at
first it was not clear how to factor them into Dehn twists that lie in SI(Sg).

I started working on Hain’s conjecture in 2005, first breaking the problem
into three steps, and then completing the steps between 2005 and 2013 in
two papers with Brendle and one paper with Brendle and Putman. In fact,
we proved a theorem that is stronger than Hain conjectured.

Theorem 2.1. For g ≥ 0, the group SI(Sg) is generated by Dehn twists
about separating curves that are preserved by the hyperelliptic involution and
have genus at most two.

As a consequence of Theorem 2.1, we obtain topological information
about an algebro-geometric space, the branch locus of the period mapping
from Torelli space to the Siegel upper half-plane. Let Hc

g denote the space
obtained from this branch locus by adjoining curves of compact type.

Theorem 2.2. For g ≥ 0, the space Hc
g is simply connected.

Brendle, Childers, and I proved two other theorems about SI(Sg).

Theorem 2.3. For g ≥ 1, we have cd(SI(Sg)) = g − 1.

Theorem 2.4. For g ≥ 2, the group Hg−1(SI(Sg)) is infinitely generated.

In particular, SI(S3) is not finitely presented. It it not known if SI(Sg)
is finitely generated (or has finitely generated first homology) for g ≥ 3.

There is a mod m version of SI(Sg): the level m subgroup of the braid
group is the kernel of the composition

B2g+1 → Sp(2g,Z)→ Sp(2g,Z/mZ).
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Arnol’d proved that the level 2 subgroup of the braid group is exactly the
pure braid group. Brendle and I prove the following.

Theorem 2.5. For any n, the level 4 subgroup of Bn is equal to the subgroup
generated by squares of Dehn twists, and is also equal to PB2

n.

3. Algebraic and geometric models for mapping class groups

Ivanov proved that Aut MCG(Sg) ∼= MCG(Sg) when g ≥ 3. He further
proved that the abstract commensurator of MCG(Sg) (the group of isomor-
phisms between finite index subgroups of MCG(Sg)) is again MCG(Sg). His
method was to translate the problem into a combinatorial topology state-
ment about the complex of curves, a combinatorial model for MCG(Sg).

The complex of curves has one vertex for each isotopy class of curves in
Sg, and Ivanov’s theorem is that its automorphism group is MCG(Sg). By
restricting attention to separating curves, Brendle and I showed the group
K(Sg), the subgroup of MCG(Sg) generated by Dehn twists about sepa-
rating curves, also has automorphism group and abstract commensurator
group isomorphic to MCG(Sg), confirming a conjecture of Farb. So the en-
tire algebraic structure of MCG(Sg) is determined by this small subgroup.

Theorem 3.1. For g ≥ 3, we have

Comm(K(Sg)) ∼= Aut(K(Sg)) ∼= MCG(Sg).

Among the consequences of this work, we recover the theorem of Farb–
Ivanov that the abstract commensurator of I(Sg) is MCG(Sg). Our main
theorem was generalized to non-closed surfaces by Kida. Our results were
extended to the terms of the Johnson filtration—even smaller subgroups—
by Bridson, Pettet, and Souto.

In my thesis, I proved another version of Ivanov’s theorem about auto-
morphisms of the complex of curves, namely, that the automorphism group
of the pants complex P(S) is again MCG(S). In the process, I showed that
the 2-skeleton of P(S) is completely encoded in the 1-skeleton.

Theorem 3.2. If S is any hyperbolic surface, then Aut(P(S)) ∼= MCG(S).

Another result that Ivanov obtained using his theorem about the complex
of curves is Royden’s theorem that the isometry group of Teichmüller space
is isomorphic (again) to MCG(S). Brock and I used the last theorem to
give a new proof of the theorem of Masur and Wolf that the isometry group
of Teichmüller space with the Weil–Petersson metric is MCG(S). Our proof
covers all remaining cases left open by Masur and Wolf.

In response to these works and others, Ivanov formulated the following.

Metaconjecture. Every object naturally associated to a surface S and hav-
ing a sufficiently rich structure has MCG(S) as its group of automorphisms.
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Some care is needed: there are examples of curve complexes that admit
exchange automorphisms, automorphisms that interchange two vertices and
fix the rest. Such automorphisms clearly do not come from MCG(Sg).

A forthcoming paper with Brendle resolves Ivanov’s metaconjecture for
a wide class of simplicial complexes. I will concentrate here on a special
case that gives the main idea. Let A be a finite list of compact, connected
surfaces. Let DA(Sg) be the graph whose vertices are isotopy classes of
nonseparating subsurfaces of Sg homeomorphic to some element of A, and
whose edges connect vertices with disjoint representatives. Define κ(A)
to be the smallest integer so that each element of A can be realized as a
subsurface of S1

κ(A).

Theorem 3.3. For A a set of compact, connected surfaces, the natural map

MCG(Sg)→ Aut(DA(Sg))

is an isomorphism if g ≥ 3κ(A) + 1.

Our theorem is the first of its kind to treat more than one complex
with a single argument. In the spirit of Ivanov’s metaconjecture, our proof
passes through Ivanov’s original theorem (in fact, the proof passes through
a sequence of complexes interpolating between DA(Sg) and C(Sg)).

The general version of our theorem allows for connected subsurfaces of
Sg that are separating in Sg. Also, it gives a necessary and sufficient condi-
tion for the resulting complex to have automorphism group isomorphic to
MCG(Sg), namely, that the complex admits no exchange automorphisms.

Using our theorem we make progress towards the algebraic version of the
metaconjecture: any sufficiently rich subgroup of MCG(Sg) has abstract
commensurator isomorphic to MCG(Sg). A special case is the aforemen-
tioned theorem announced by Bridson–Pettet–Souto.

Using Ivanov’s approach via curve complexes, Leininger and I computed
the abstract commensurator of the braid group, Behrstock and I computed
the abstract commensurators of mapping class groups of genus 1 surfaces
(this is the only place where there are non-geometric commensurators), and
Bell and I classified injective maps between various Artin groups of finite
type, generalizing work of Charney–Crisp.

In a somewhat different direction, Birman, Menasco, and I studied the
geometry of the complex of curves. By the seminal work of Masur and
Minsky, the complex of curves is a hyperbolic space of infinite diameter.
Leasure, Shackleton, and Webb gave algorithms for computing the distance
between two vertices, but the running times were too long to be practical.
We gave a new simple approach to computing the distance. Our main
contribution is a new class of geodesics connecting all pairs of vertices, called
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efficient geodesics, which are analogous to the tight geodesics of Masur and
Minsky. As one application of our methods, Menasco led a group of REU
students to show that the minimum intersection number for two vertices of
distance four in genus two is twelve.

4. Dynamical aspects of pseudo-Anosov mapping classes

The Nielsen–Thurston classification theorem says that every homeomor-
phism of a surface is homotopic to one in a certain canonical form: there
is a (possibly empty) invariant 1-submanifold, and on each complementary
component the homeomorphism either acts as a periodic map or a pseudo-
Anosov map, that is, a homeomorphism that is locally modeled (away from
a finite set) on the action of a hyperbolic element of SL(2,Z) on R2.

A basic measure of complexity of a pseudo-Anosov map is its topological
entropy. This number measures the amount of mixing being effected. A
central open question is: which real numbers are entropies of pseudo-Anosov
maps of surfaces?

For a fixed surface, the set of entropies of pseudo-Anosov maps is closed
and discrete; in particular, there is a smallest one. For H 6 MCG(Sg),
write L(H) for the smallest entropy of a pseudo-Anosov element of H.

Penner showed that if we allow the genus of our surface to go to infinity
we can find pseudo-Anosov maps with smaller and smaller entropies. More
precisely, he gave the asymptotics

L(MCG(Sg)) �
1

g
.

Farb, Leininger, and I set out to show that L(I(Sg)) goes to zero at a
slower rate than L(MCG(Sg)). What we found is much stronger: the set of
entropies in the collection of all pseudo-Anosov elements of I(Sg) is bounded
away from zero, independently of g.

Theorem 4.1. For g ≥ 2, we have L(I(Sg)) � 1.

We can generalize this result in two directions. First, we can consider
L(MCG(Sg), k) the smallest entropy of a pseudo-Anosov element of MCG(Sg)
fixing a subspace ofH1(Sg) of dimension at least k. With Agol and Leininger,
I recently proved the following, answering a question of Ellenberg.

Theorem 4.2. For g ≥ 2 and 0 ≤ k ≤ 2g, we have

L(MCG(Sg), k) � (k + 1)/g.

This interpolates between Penner’s result (k = 0) and our result on the
Torelli group (k = 2g).

In another direction, there is a filtration of MCG(Sg) called the Johnson
filtration. The kth term Nk(Sg) is the kernel of the action on π1(Sg) modulo
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the kth term of its lower central series. The first three terms are MCG(Sg),
I(Sg), and K(Sg). We have the following theorem with Farb and Leininger.

Theorem 4.3. Given k ≥ 1, there exist constants mk and Mk, with mk →
∞ as k →∞, so that

mk ≤ L(Nk(Sg)) ≤Mk

for all g ≥ 2.

The point here is that mk and Mk are independent of g, in contrast
to Penner’s theorem above. We can paraphrase the theme as: algebraic
complexity implies dynamical complexity.

Farb, Leininger, and I also proved a theorem that relates small entropies
to 3-manifolds. Fix some L > 0 and consider the set

Ψ(L) = {φ : S → S pseudo-Anosov | entropy(φ) < L/|χ(S)|};

in this definition, S ranges over all surfaces. Penner’s result implies that,
for L large enough, this set of small-entropy pseudo-Anosov maps is infinite.
Any φ ∈ Ψ(L) gives rise to a 3-manifold Mφ, its mapping torus. Denote by
M◦

φ the 3-manifold obtained from Mφ by deleting the orbit of each singular
point of φ under the suspension flow.

Theorem 4.4. Fix L > 0. The set {M◦
φ | φ ∈ Ψ(L)} is finite.

In other words, the infinite set of small-entropy pseudo-Anosov maps
is “generated” by (or, flow-equivalent to) a finite set of examples (after
deleting the singular sets). This answers a question posed by McMullen.
Our work inspired a paper by Agol, who (among other things) gave a new
proof of our theorem and a paper by Algom-Kfir and Rafi, who gave a
version of our theorem for Out(Fn).

Another point of view is that pseudo-Anosov maps of a surface corre-
spond to closed geodesics in the corresponding moduli space. The length
of this geodesic with respect to the Teichmüller metric is the entropy of the
pseudo-Anosov map. Building on Theorem 4.4, Leininger and I obtained a
description of the location of these geodesics in moduli space.

Let Mg,[ε,R] denote the subset of moduli space Mg consisting of all sur-
faces with injectivity radius lying in [ε, R]. Let Gg(L) denote the set of
geodesics in Mg corresponding to elements of Ψ(L); these are the L-short
geodesics in moduli space.

Theorem 4.5. Let L > 0. There exists R > ε > 0 so that, for each g ≥ 1,
each element of Gg(L) lies in Mg,[ε,R].
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We are currently working on the following Symmetry Conjecture, which
would give yet another point of view on the small-entropy pseudo-Anosov
maps: any pseudo-Anosov map realizing the smallest entropy for a given
surface can be decomposed as a homeomorphism supported on a subsurface
of uniformly small complexity multiplied by a finite order homeomorphism.
Such a theorem would show that Penner’s examples are universal.

5. Relations in the mapping class group

I have written a number of other papers on the group structure of the
mapping class group and the braid group. For instance:

Theorem 5.1. Let a, b ∈ PBn. Then 〈a, b〉 is either abelian or free.

This answers a question of Paris, and the proof uses the theories of hyper-
bolic manifolds and group actions on trees. In the theory of mapping class
groups, one only expects such a theorem “up to powers,” that is, one ex-
pects that two elements have high powers that either commute or generate
a free group. In this case the power required is 1.

The last theorem shows that the pure braid group satisfies a property
that is common to all right-angled Artin groups, so one is led to try to
understand the extent to which braid groups and mapping class groups are
similar to right-angled Artin groups. Matt Clay, Chris Leininger, and I
showed that (aside from the obvious exceptions) braid groups and mapping
class groups are never quasi-isometric to right-angled Artin groups.

Schleimer and I showed that Dehn twists about nonseparating curves in
Sg are not primitive. In particular, they have nontrivial (2g − 1)st roots.
This simple fact came as a surprise to all of the experts we polled. Our
work inspired papers by McCullough–Rajeevsarathy, who showed that our
examples of roots realize the maximal possible degree, and by Hirose, who
studied the analogous problem in the handlebody group.

In my thesis, I showed that if a relation between Dehn twists has the
algebraic form of a lantern relation, then the curves in the relation must be
configured as in the usual lantern relation.

Theorem 5.2. If the product of two non-commuting Dehn twists Tx and
Ty is equal to a multitwist, then i(x, y) = 2 and ı̂(x, y) = 0.

This theorem has had several applications, for instance in the study by
Aramayona–Souto on homomorphisms between mapping class groups and
in the study of planar open books by Kaloti and by Van Horn-Morris and
Plamenevskaya.

Finally, in a seminar at Columbia in the early 1980s, Dennis Johnson
asked whether the group J generated by simply intersecting pair maps in
S2 is equal to the whole Torelli group I(S2). Brendle and I gave a suite of
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new relations in the Torelli group and answered Johnson’s question in the
negative.

Theorem 5.3. I(S2)/J ∼= Z.

6. Lefschetz fibrations and surface bundles

One widely studied class of 4-manifolds are the Lefschetz fibrations.
These are 4-manifolds equipped with a smooth map onto a surface which
is a submersion except at a finite number of critical points (of a certain
specific form). Donaldson showed that, after blow-ups, every compact sym-
plectic 4-manifold admits the structure of a Lefschetz fibration. In the case
where the critical locus is empty, a Lefschetz fibration is a surface bundle
over a surface.

There are two natural ways to build new surface bundles from old ones,
namely the fiber sum operation and the section sum operation. The sur-
face bundles that are indecomposable in either sense can be viewed as the
building blocks of surface bundles.

Theorem 6.1. For every h ≥ 2 and g ≥ 2 there exist infinitely many 4-
manifolds that have the structure of a genus g surface bundle over a genus
h surface which is both fiber sum and section sum indecomposable.

Baykur and I also constructed explicit examples of Lefschetz fibrations
and surface bundles over surfaces with monodromy in the Torelli group
(Smith proved that there are no such fibration when the base genus is
zero). As a byproduct, we give the first higher-genus examples of Lefschetz
fibrations that are not fiber sums of holomorphic fibrations (Smith and
Stipsicz constructed examples where the base genus is zero).


